Mostrar el registro sencillo del ítem
dc.contributor.author | García Mollá, Víctor Manuel | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Vidal, Antonio M. | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2022-01-20T07:32:10Z | |
dc.date.available | 2022-01-20T07:32:10Z | |
dc.date.issued | 2019-06-14 | es_ES |
dc.identifier.isbn | 978-3-030-22734-0 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179960 | |
dc.description.abstract | In this paper, we present the optimization and parallelization of a state-of-the-art algorithm for automatic classification, in order to perform real-time classification of clinical data. The parallelization has been carried out so that the algorithm can be used in real time in standard computers, or in high performance computing servers. The fastest versions have been obtained carrying out most of the computations in Graphics Processing Units (GPUs). The algorithms obtained have been tested in a case of automatic classification of electroencephalographic signals from patients. | es_ES |
dc.description.sponsorship | This work was supported by Spanish Administration (Ministerio de Economía y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P; and Generalitat Valenciana under grants PROMETEO II/2014/032 and PROMETEO II/2014/003. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Computational Science - ICCS 2019. Lecture Notes in Computer Science | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;11538 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | High performance computing | es_ES |
dc.subject | Bioinformatic | es_ES |
dc.subject | Automatic classification ICA (independent component analysis) | es_ES |
dc.subject | SICAMM | es_ES |
dc.subject | GPU computing | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Parallelization of an algorithm for automatic classification of medical data | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-22744-9_1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F032//TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F003//Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García Mollá, VM.; Salazar Afanador, A.; Safont Armero, G.; Vidal, AM.; Vergara Domínguez, L. (2019). Parallelization of an algorithm for automatic classification of medical data. Springer. 3-16. https://doi.org/10.1007/978-3-030-22744-9_1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Computational Science (ICCS 2019) | es_ES |
dc.relation.conferencedate | Junio 12-14,2019 | es_ES |
dc.relation.conferenceplace | Faro, Portugal | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-22744-9_1 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\392514 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image computing techniques. Quant. Imag. Med. Surg. 2(3), 188–206 (2012). https://doi.org/10.3978/j.issn.2223-4292.2012.08.02 | es_ES |
dc.description.references | Montagnat, J., et al.: Medical images simulation, storage, and processing on the European DataGrid testbed. J. Grid Comput. 2(4), 387 (2005). https://doi.org/10.1007/s10723-004-5744-y | es_ES |
dc.description.references | Saxena, S., Sharma, S., Sharma, N.: Image registration techniques using parallel computing in multicore environment and its applications in medical imaging: an overview, In: International Conference on Computer and Communication Technology (ICCCT) (2014) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Process. 90, 2314–2318 (2010) | es_ES |
dc.description.references | Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005) | es_ES |
dc.description.references | CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html | es_ES |
dc.description.references | Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Oxford (2010) | es_ES |
dc.description.references | Salazar, A., Igual, J., Vergara, L., Serrano, A.: Learning hierarchies from ICA mixtures. In: IEEE International Conference on Neural Networks, IJCNN 2007, pp. 2271–2276 (2007) | es_ES |
dc.description.references | Salazar, A.: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer, New York (2013). https://doi.org/10.1007/978-3-642-30752-2 | es_ES |
dc.description.references | Safont, G., Salazar, A., Vergara, L., Gomez, E., Villanueva, V.: Probabilistic distance for mixtures of independent component analyzers. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1161–1173 (2018) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recogn. 43(1), 69–85 (2010) | es_ES |
dc.description.references | The Mathworks Inc.: MATLAB R14 Natick MA (2004) | es_ES |
dc.description.references | http://www.openmp.org/ | es_ES |
dc.description.references | Intel(R) AVX - Intel(R) Software Network. http://software.intel.com/en-us/avx/ | es_ES |
dc.description.references | Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) | es_ES |
dc.description.references | Anderson, E.: LAPACK Users’ Guide. SIAM, Philadelphia (1999) | es_ES |
dc.description.references | CUBLAS. http://docs.nvidia.com/cuda/cublas/index.html | es_ES |
dc.description.references | Harris, M.: Optimizing parallel reduction in CUDA. https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf | es_ES |
dc.description.references | Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R.: Signal processing techniques applied to human sleep EEG signals-a review. Biomed. Signal Process. Control 10, 21–33 (2014) | es_ES |
dc.description.references | Strauss, E.: A Compendium of Neuropsychological Tests. Oxford University Press, Oxford (2006) | es_ES |