- -

Parallelization of an algorithm for automatic classification of medical data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallelization of an algorithm for automatic classification of medical data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Mollá, Víctor Manuel es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Safont Armero, Gonzalo es_ES
dc.contributor.author Vidal, Antonio M. es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2022-01-20T07:32:10Z
dc.date.available 2022-01-20T07:32:10Z
dc.date.issued 2019-06-14 es_ES
dc.identifier.isbn 978-3-030-22734-0 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179960
dc.description.abstract In this paper, we present the optimization and parallelization of a state-of-the-art algorithm for automatic classification, in order to perform real-time classification of clinical data. The parallelization has been carried out so that the algorithm can be used in real time in standard computers, or in high performance computing servers. The fastest versions have been obtained carrying out most of the computations in Graphics Processing Units (GPUs). The algorithms obtained have been tested in a case of automatic classification of electroencephalographic signals from patients. es_ES
dc.description.sponsorship This work was supported by Spanish Administration (Ministerio de Economía y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P; and Generalitat Valenciana under grants PROMETEO II/2014/032 and PROMETEO II/2014/003. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Computational Science - ICCS 2019. Lecture Notes in Computer Science es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;11538 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject High performance computing es_ES
dc.subject Bioinformatic es_ES
dc.subject Automatic classification ICA (independent component analysis) es_ES
dc.subject SICAMM es_ES
dc.subject GPU computing es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Parallelization of an algorithm for automatic classification of medical data es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-22744-9_1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F032//TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F003//Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García Mollá, VM.; Salazar Afanador, A.; Safont Armero, G.; Vidal, AM.; Vergara Domínguez, L. (2019). Parallelization of an algorithm for automatic classification of medical data. Springer. 3-16. https://doi.org/10.1007/978-3-030-22744-9_1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Computational Science (ICCS 2019) es_ES
dc.relation.conferencedate Junio 12-14,2019 es_ES
dc.relation.conferenceplace Faro, Portugal es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-22744-9_1 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\392514 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image computing techniques. Quant. Imag. Med. Surg. 2(3), 188–206 (2012). https://doi.org/10.3978/j.issn.2223-4292.2012.08.02 es_ES
dc.description.references Montagnat, J., et al.: Medical images simulation, storage, and processing on the European DataGrid testbed. J. Grid Comput. 2(4), 387 (2005). https://doi.org/10.1007/s10723-004-5744-y es_ES
dc.description.references Saxena, S., Sharma, S., Sharma, N.: Image registration techniques using parallel computing in multicore environment and its applications in medical imaging: an overview, In: International Conference on Computer and Communication Technology (ICCCT) (2014) es_ES
dc.description.references Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Process. 90, 2314–2318 (2010) es_ES
dc.description.references Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005) es_ES
dc.description.references CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html es_ES
dc.description.references Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Oxford (2010) es_ES
dc.description.references Salazar, A., Igual, J., Vergara, L., Serrano, A.: Learning hierarchies from ICA mixtures. In: IEEE International Conference on Neural Networks, IJCNN 2007, pp. 2271–2276 (2007) es_ES
dc.description.references Salazar, A.: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer, New York (2013). https://doi.org/10.1007/978-3-642-30752-2 es_ES
dc.description.references Safont, G., Salazar, A., Vergara, L., Gomez, E., Villanueva, V.: Probabilistic distance for mixtures of independent component analyzers. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1161–1173 (2018) es_ES
dc.description.references Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recogn. 43(1), 69–85 (2010) es_ES
dc.description.references The Mathworks Inc.: MATLAB R14 Natick MA (2004) es_ES
dc.description.references http://www.openmp.org/ es_ES
dc.description.references Intel(R) AVX - Intel(R) Software Network. http://software.intel.com/en-us/avx/ es_ES
dc.description.references Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) es_ES
dc.description.references Anderson, E.: LAPACK Users’ Guide. SIAM, Philadelphia (1999) es_ES
dc.description.references CUBLAS. http://docs.nvidia.com/cuda/cublas/index.html es_ES
dc.description.references Harris, M.: Optimizing parallel reduction in CUDA. https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf es_ES
dc.description.references Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R.: Signal processing techniques applied to human sleep EEG signals-a review. Biomed. Signal Process. Control 10, 21–33 (2014) es_ES
dc.description.references Strauss, E.: A Compendium of Neuropsychological Tests. Oxford University Press, Oxford (2006) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem