- -

Parallelization of an algorithm for automatic classification of medical data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallelization of an algorithm for automatic classification of medical data

Mostrar el registro completo del ítem

García Mollá, VM.; Salazar Afanador, A.; Safont Armero, G.; Vidal, AM.; Vergara Domínguez, L. (2019). Parallelization of an algorithm for automatic classification of medical data. Springer. 3-16. https://doi.org/10.1007/978-3-030-22744-9_1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179960

Ficheros en el ítem

Metadatos del ítem

Título: Parallelization of an algorithm for automatic classification of medical data
Autor: García Mollá, Víctor Manuel Salazar Afanador, Addisson Safont Armero, Gonzalo Vidal, Antonio M. Vergara Domínguez, Luís
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
In this paper, we present the optimization and parallelization of a state-of-the-art algorithm for automatic classification, in order to perform real-time classification of clinical data. The parallelization has been carried ...[+]
Palabras clave: High performance computing , Bioinformatic , Automatic classification ICA (independent component analysis) , SICAMM , GPU computing
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-22734-0
Fuente:
Computational Science - ICCS 2019. Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-22744-9_1
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-22744-9_1
Título del congreso: International Conference on Computational Science (ICCS 2019)
Lugar del congreso: Faro, Portugal
Fecha congreso: Junio 12-14,2019
Serie: Lecture Notes in Computer Science;11538
Código del Proyecto:
info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F032//TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/
info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/
info:eu-repo/grantAgreement///PROMETEOII%2F2014%2F003//Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/
Agradecimientos:
This work was supported by Spanish Administration (Ministerio de Economía y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P; and Generalitat Valenciana under grants PROMETEO ...[+]
Tipo: Comunicación en congreso Artículo Capítulo de libro

References

Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image computing techniques. Quant. Imag. Med. Surg. 2(3), 188–206 (2012). https://doi.org/10.3978/j.issn.2223-4292.2012.08.02

Montagnat, J., et al.: Medical images simulation, storage, and processing on the European DataGrid testbed. J. Grid Comput. 2(4), 387 (2005). https://doi.org/10.1007/s10723-004-5744-y

Saxena, S., Sharma, S., Sharma, N.: Image registration techniques using parallel computing in multicore environment and its applications in medical imaging: an overview, In: International Conference on Computer and Communication Technology (ICCCT) (2014) [+]
Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image computing techniques. Quant. Imag. Med. Surg. 2(3), 188–206 (2012). https://doi.org/10.3978/j.issn.2223-4292.2012.08.02

Montagnat, J., et al.: Medical images simulation, storage, and processing on the European DataGrid testbed. J. Grid Comput. 2(4), 387 (2005). https://doi.org/10.1007/s10723-004-5744-y

Saxena, S., Sharma, S., Sharma, N.: Image registration techniques using parallel computing in multicore environment and its applications in medical imaging: an overview, In: International Conference on Computer and Communication Technology (ICCCT) (2014)

Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Process. 90, 2314–2318 (2010)

Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005)

CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Oxford (2010)

Salazar, A., Igual, J., Vergara, L., Serrano, A.: Learning hierarchies from ICA mixtures. In: IEEE International Conference on Neural Networks, IJCNN 2007, pp. 2271–2276 (2007)

Salazar, A.: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer, New York (2013). https://doi.org/10.1007/978-3-642-30752-2

Safont, G., Salazar, A., Vergara, L., Gomez, E., Villanueva, V.: Probabilistic distance for mixtures of independent component analyzers. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1161–1173 (2018)

Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recogn. 43(1), 69–85 (2010)

The Mathworks Inc.: MATLAB R14 Natick MA (2004)

http://www.openmp.org/

Intel(R) AVX - Intel(R) Software Network. http://software.intel.com/en-us/avx/

Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

Anderson, E.: LAPACK Users’ Guide. SIAM, Philadelphia (1999)

CUBLAS. http://docs.nvidia.com/cuda/cublas/index.html

Harris, M.: Optimizing parallel reduction in CUDA. https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R.: Signal processing techniques applied to human sleep EEG signals-a review. Biomed. Signal Process. Control 10, 21–33 (2014)

Strauss, E.: A Compendium of Neuropsychological Tests. Oxford University Press, Oxford (2006)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem