- -

Sensitivity of the NEXT experiment to 124-Xe double electron capture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sensitivity of the NEXT experiment to 124-Xe double electron capture

Mostrar el registro completo del ítem

Martinez-Lema, G.; Martinez-Vara, M.; Sorel, M.; Adams, C.; Álvarez-Puerta, V.; Arazi, L.; Arnquist, I.... (2021). Sensitivity of the NEXT experiment to 124-Xe double electron capture. Journal of High Energy Physics (Online). 2:1-25. https://doi.org/10.1007/JHEP02(2021)203

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180036

Ficheros en el ítem

Metadatos del ítem

Título: Sensitivity of the NEXT experiment to 124-Xe double electron capture
Autor: Martinez-Lema, G. Martinez-Vara, M. Sorel, M. Adams, C. Álvarez-Puerta, Vicente Arazi, L. Arnquist, I.J. Azevedo, C. D. R. Bailey, K. Ballester Merelo, Francisco José Benlloch-Rodriguez, J. M. Borges, F. I. G. M. Byrnes, N. Carcel, S. Carrión, J. V. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite di erent, potentially providing a new channel ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of High Energy Physics (Online). (eissn: 1029-8479 )
DOI: 10.1007/JHEP02(2021)203
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/JHEP02(2021)203
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/
info:eu-repo/grantAgreement/EC/FP7/339787/EU/
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
info:eu-repo/grantAgreement/EC/H2020/674896/EU/
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/EC/H2020/690575/EU/
info:eu-repo/grantAgreement/DOE//DE-SC0019223/
info:eu-repo/grantAgreement/EC/H2020/740055/EU/
info:eu-repo/grantAgreement/DOE//DE-SC0019054/
info:eu-repo/grantAgreement/FCT/5876/147413/PT/
info:eu-repo/grantAgreement/MCIU//MDM-2016-0692//Programa Maria de Maetzu/
info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F105921%2F2014/PT/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F76842%2F2011/PT/
info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-NUC%2F2525%2F2014/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F109180%2F2015/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18820/ES/RYC-2015-18820/
info:eu-repo/grantAgreement/MINECO//CEX2018-000867-S/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
[-]
Agradecimientos:
The NEXT collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and ...[+]
Tipo: Artículo

References

Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

SNO collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].

SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE]. [+]
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

SNO collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].

SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].

R.G. Winter, Double K Capture and Single K Capture with Positron Emission, Phys. Rev. 100 (1955) 142 [INSPIRE].

J. Bernabeu, A. De Rujula and C. Jarlskog, Neutrinoless Double Electron Capture as a Tool to Measure the νe Mass, Nucl. Phys. B 223 (1983) 15 [INSPIRE].

XENON collaboration, Search for two-neutrino double electron capture of 124Xe with XENON100, Phys. Rev. C 95 (2017) 024605 [arXiv:1609.03354] [INSPIRE].

XMASS collaboration, Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I, Prog. Theor. Exp. Phys. 2018 (2018) 053D03 [arXiv:1801.03251] [INSPIRE].

Y.M. Gavriljuk et al., 2K-Capture in 124Xe: Results of Data Processing for an Exposure of 37.7 kg day, Phys. Part. Nucl. 49 (2018) 563 [arXiv:1806.03060] [INSPIRE].

XENON collaboration, Observation of two-neutrino double electron capture in 124Xe with XENON1T, Nature 568 (2019) 532 [arXiv:1904.11002] [INSPIRE].

A.P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva and Y.S. Kapusta, Weak decay of 130Ba and 132Ba: Geochemical measurements, Phys. Rev. C 64 (2001) 035205 [INSPIRE].

M. Pujol, B. Marty, P. Burnard and P. Philippot, Xenon in archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation, Geochim. Cosmochim. Acta 73 (2009) 6834.

S.S. Ratkevich et al., Comparative study of the double K-shell-vacancy production in single- and double-electron capture decay, Phys. Rev. C 96 (2017) 065502 [arXiv:1707.07171] [INSPIRE].

J.R. de Laeter et al., Atomic weights of the elements. Review 2000, Pure Appl. Chem. 75 (2003) 683.

J. Suhonen, Double beta decays of 124Xe investigated in the QRPA framework, J. Phys. G 40 (2013) 075102 [INSPIRE].

P. Pirinen and J. Suhonen, Systematic approach to β and 2νββ decays of mass A = 100–136 nuclei, Phys. Rev. C 91 (2015) 054309 [INSPIRE].

E.A. Coello Pérez, J. Menéndez and A. Schwenk, Two-neutrino double electron capture on 124Xe based on an effective theory and the nuclear shell model, Phys. Lett. B 797 (2019) 134885 [arXiv:1809.04443] [INSPIRE].

M. Doi and T. Kotani, Neutrinoless modes of double beta decay, Prog. Theor. Phys. 89 (1993) 139 [INSPIRE].

NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE].

NEXT collaboration, Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth. A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].

NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].

NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE].

NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE].

APPEC Committee collaboration, Double Beta Decay APPEC Committee Report, arXiv:1910.04688 [INSPIRE].

D.R. Nygren, Detecting the barium daughter in 136Xe 0–νββ decay using single-molecule fluorescence imaging techniques, J. Phys. Conf. Ser. 650 (2015) 012002 [INSPIRE].

B.J.P. Jones, A.D. McDonald and D.R. Nygren, Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay, 2016 JINST 11 P12011 [arXiv:1609.04019] [INSPIRE].

NEXT collaboration, Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett. 120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].

P. Thapa et al., Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, Sci. Rep. 9 (2019) 15097 [arXiv:1904.05901] [INSPIRE].

I. Rivilla et al., Towards a background-free neutrinoless double beta decay experiment based on a fluorescent bicolor sensor, arXiv:1909.02782 [INSPIRE].

NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST 13 P07013 [arXiv:1804.01680] [INSPIRE].

NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].

GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

S.T. Perkins, M.H. Chen, D.E. Cullen and J.H. Hubbell, Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100, Lawrence Livermore National Laboratory, Livermore CA U.S.A. (1991) [UCRL-50400-V-30].

J.A. Bearden and A.F. Burr, Reevaluation of X-Ray Atomic Energy Levels, Rev. Mod. Phys. 39 (1967) 125 [INSPIRE].

D.A. Nesterenko et al., Double-β transformations in isobaric triplets with mass numbers A = 124, 130, and 136, Phys. Rev. C 86 (2012) 044313 [INSPIRE].

R. Firestone, V. Shirley, C. Baglin, S. Chu and J. Zipkin, Table of Isotopes, eight edition, John Wiley and Sons, Inc. (1997).

NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].

NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE].

G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [arXiv:1609.06202] [INSPIRE].

E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].

LZ collaboration, The LUX-ZEPLIN (LZ) Experiment, Nucl. Instrum. Meth. A 953 (2020) 163047 [arXiv:1910.09124] [INSPIRE].

PandaX collaboration, Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 (2019) 31011 [arXiv:1806.02229] [INSPIRE].

C. Wittweg, B. Lenardo, A. Fieguth and C. Weinheimer, Detection prospects for the second-order weak decays of 124Xe in multi-tonne xenon time projection chambers, Eur. Phys. J. C 80 (2020) 1161 [arXiv:2002.04239] [INSPIRE].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem