Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
SNO collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].
SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
[+]
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
SNO collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].
SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].
R.G. Winter, Double K Capture and Single K Capture with Positron Emission, Phys. Rev. 100 (1955) 142 [INSPIRE].
J. Bernabeu, A. De Rujula and C. Jarlskog, Neutrinoless Double Electron Capture as a Tool to Measure the νe Mass, Nucl. Phys. B 223 (1983) 15 [INSPIRE].
XENON collaboration, Search for two-neutrino double electron capture of 124Xe with XENON100, Phys. Rev. C 95 (2017) 024605 [arXiv:1609.03354] [INSPIRE].
XMASS collaboration, Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I, Prog. Theor. Exp. Phys. 2018 (2018) 053D03 [arXiv:1801.03251] [INSPIRE].
Y.M. Gavriljuk et al., 2K-Capture in 124Xe: Results of Data Processing for an Exposure of 37.7 kg day, Phys. Part. Nucl. 49 (2018) 563 [arXiv:1806.03060] [INSPIRE].
XENON collaboration, Observation of two-neutrino double electron capture in 124Xe with XENON1T, Nature 568 (2019) 532 [arXiv:1904.11002] [INSPIRE].
A.P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva and Y.S. Kapusta, Weak decay of 130Ba and 132Ba: Geochemical measurements, Phys. Rev. C 64 (2001) 035205 [INSPIRE].
M. Pujol, B. Marty, P. Burnard and P. Philippot, Xenon in archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation, Geochim. Cosmochim. Acta 73 (2009) 6834.
S.S. Ratkevich et al., Comparative study of the double K-shell-vacancy production in single- and double-electron capture decay, Phys. Rev. C 96 (2017) 065502 [arXiv:1707.07171] [INSPIRE].
J.R. de Laeter et al., Atomic weights of the elements. Review 2000, Pure Appl. Chem. 75 (2003) 683.
J. Suhonen, Double beta decays of 124Xe investigated in the QRPA framework, J. Phys. G 40 (2013) 075102 [INSPIRE].
P. Pirinen and J. Suhonen, Systematic approach to β and 2νββ decays of mass A = 100–136 nuclei, Phys. Rev. C 91 (2015) 054309 [INSPIRE].
E.A. Coello Pérez, J. Menéndez and A. Schwenk, Two-neutrino double electron capture on 124Xe based on an effective theory and the nuclear shell model, Phys. Lett. B 797 (2019) 134885 [arXiv:1809.04443] [INSPIRE].
M. Doi and T. Kotani, Neutrinoless modes of double beta decay, Prog. Theor. Phys. 89 (1993) 139 [INSPIRE].
NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE].
NEXT collaboration, Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth. A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].
NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].
NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE].
NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE].
APPEC Committee collaboration, Double Beta Decay APPEC Committee Report, arXiv:1910.04688 [INSPIRE].
D.R. Nygren, Detecting the barium daughter in 136Xe 0–νββ decay using single-molecule fluorescence imaging techniques, J. Phys. Conf. Ser. 650 (2015) 012002 [INSPIRE].
B.J.P. Jones, A.D. McDonald and D.R. Nygren, Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay, 2016 JINST 11 P12011 [arXiv:1609.04019] [INSPIRE].
NEXT collaboration, Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett. 120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].
P. Thapa et al., Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, Sci. Rep. 9 (2019) 15097 [arXiv:1904.05901] [INSPIRE].
I. Rivilla et al., Towards a background-free neutrinoless double beta decay experiment based on a fluorescent bicolor sensor, arXiv:1909.02782 [INSPIRE].
NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST 13 P07013 [arXiv:1804.01680] [INSPIRE].
NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
S.T. Perkins, M.H. Chen, D.E. Cullen and J.H. Hubbell, Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100, Lawrence Livermore National Laboratory, Livermore CA U.S.A. (1991) [UCRL-50400-V-30].
J.A. Bearden and A.F. Burr, Reevaluation of X-Ray Atomic Energy Levels, Rev. Mod. Phys. 39 (1967) 125 [INSPIRE].
D.A. Nesterenko et al., Double-β transformations in isobaric triplets with mass numbers A = 124, 130, and 136, Phys. Rev. C 86 (2012) 044313 [INSPIRE].
R. Firestone, V. Shirley, C. Baglin, S. Chu and J. Zipkin, Table of Isotopes, eight edition, John Wiley and Sons, Inc. (1997).
NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].
NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE].
G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [arXiv:1609.06202] [INSPIRE].
E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].
LZ collaboration, The LUX-ZEPLIN (LZ) Experiment, Nucl. Instrum. Meth. A 953 (2020) 163047 [arXiv:1910.09124] [INSPIRE].
PandaX collaboration, Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 (2019) 31011 [arXiv:1806.02229] [INSPIRE].
C. Wittweg, B. Lenardo, A. Fieguth and C. Weinheimer, Detection prospects for the second-order weak decays of 124Xe in multi-tonne xenon time projection chambers, Eur. Phys. J. C 80 (2020) 1161 [arXiv:2002.04239] [INSPIRE].
[-]