Mostrar el registro sencillo del ítem
dc.contributor.author | Mathern, Alexandre | es_ES |
dc.contributor.author | Penadés-Plà, Vicent | es_ES |
dc.contributor.author | Armesto Barros, Jesús | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2022-01-24T19:29:42Z | |
dc.date.available | 2022-01-24T19:29:42Z | |
dc.date.issued | 2022-01-18 | es_ES |
dc.identifier.issn | 1615-147X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180137 | |
dc.description.abstract | [EN] In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational efforts low. A method is proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by Latin hypercube sampling. A multi-objective optimization is then performed to obtain the optimum designs for different weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method have a sustainability impact 8¿15% lower than the designs developed by traditional methods. | es_ES |
dc.description.sponsorship | Open access funding provided by Chalmers University of Technology. This work was fnancially supported by Sweden's Innovation Agency (Grant Number: 2017-03312), the Swedish Transport Administration (Grant Number: BBT-2017- 037), the Swedish Wind Power Technology Centre (SWPTC), NCC, and Grant PID2020-117056RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Structural and Multidisciplinary Optimization | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Multidisciplinary design optimization | es_ES |
dc.subject | Structural design | es_ES |
dc.subject | Kriging surrogate model | es_ES |
dc.subject | Reinforced concrete structures | es_ES |
dc.subject | Multi-criteria decision making | es_ES |
dc.subject | Parametric design | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00158-021-03154-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117056RB-I00/ES/OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/VINNOVA//2017-03312/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Swedish Transport Administration//BBT-2017-037/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Mathern, A.; Penadés-Plà, V.; Armesto Barros, J.; Yepes, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization. 65(46):1-16. https://doi.org/10.1007/s00158-021-03154-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00158-021-03154-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 46 | es_ES |
dc.relation.pasarela | S\453455 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Swedish Transport Administration | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Swedish Wind Power Technology Centre | es_ES |
dc.contributor.funder | Swedish Governmental Agency for Innovation Systems | es_ES |
dc.description.references | Boscardin JT, Yepes V, Kripka M (2019) Optimization of reinforced concrete building frames with automated grouping of columns. Autom Constr 104:331–340. https://doi.org/10.1016/j.autcon.2019.04.024 | es_ES |
dc.description.references | Boverket (2015) EKS 10-Boverkets författningssamling [Boverket’s regulations and general advice (2011: 10) on the application of European design standards (Eurocodes)]. (In Swedish) | es_ES |
dc.description.references | Camp CV, Assadollahi A (2013) CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct Multidisc Optim 48:411–426. https://doi.org/10.1007/s00158-013-0897-6 | es_ES |
dc.description.references | Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng Struct 48:363–372. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.004 | es_ES |
dc.description.references | Catalonia Institute of Construction Technology (2020) BEDEC PR/PCT ITEC material database | es_ES |
dc.description.references | Chalouhi EK, Pacoste C, Karoumi R (2020) Topological and size optimization of RC beam bridges: an automated design approach for cost effective and environmental friendly solutions. Nord Concr Res 61:53–78. https://doi.org/10.2478/ncr-2019-0017 | es_ES |
dc.description.references | Chang H, Cheng X, Liu Z, Feng B, Zhan C (2016) Sample selection method for ship resistance performance optimization based on approximated model. J Sh Res 60:1–13. https://doi.org/10.5957/JOSR.60.1.140047 | es_ES |
dc.description.references | Cressie N (1990) The origins of kriging. Math Geol 22:239–252. https://doi.org/10.1007/BF00889887 | es_ES |
dc.description.references | DNV/Risø (2002) Guidelines for Design of Wind Turbines, 2nd ed. | es_ES |
dc.description.references | Dassault Systèmes (2014) Abaqus 6.14 - Abaqus/CAE User’s Guide | es_ES |
dc.description.references | Ecoinvent (2016) Ecoinvent v. 3.3. https://www.ecoinvent.org/database/ecoinvent-33/ecoinvent-33.html. Accessed 16 Jun 2020 | es_ES |
dc.description.references | Eisfeldt F (2017) Soca v.1 add-on: adding social impact information to ecoinvent | es_ES |
dc.description.references | Ek K, Mathern A, Rempling R, Rosén L, Claeson-Jonsson C, Brinkhoff P, Norin M (2019) Multi-criteria decision analysis methods to support sustainable infrastructure construction. In: International Association for Bridge and Structural Engineering (IABSE) | es_ES |
dc.description.references | (ed) In: Proceedings of IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment ‐ Risk and Asset Management, March 27‐29, 2019. Guimarães, Portugal, pp 1084-1091 | es_ES |
dc.description.references | European Committee for Standardization (CEN) (2002) EN 1991-1-1. Eurocode 1: Actions on structures - Part 1–1: General actions-densities, self-weight , imposed loads for buildings. Brussels | es_ES |
dc.description.references | European Committee for Standardization (CEN) (2004a) EN 1992-1-1. Eurocode 2: design of concrete structures: Part 1-1: general rules and rules for buildings. Brussels | es_ES |
dc.description.references | European Committee for Standardization (CEN) (2004b) EN 1997-1:2004. Eurocode 7: Geotechnical design—Part 1: general rules. Brussels | es_ES |
dc.description.references | European Committee for Standardization (CEN) (2005) EN 1990:2002. Eurocode: Basis of structural design. Brussels | es_ES |
dc.description.references | European Committee for Standardization (CEN) (2017) EN 15643-5:2017 - Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – Part 5: Framework on specific principles and requirement for civil engineering works. Brussels, Belgium | es_ES |
dc.description.references | Favier A, De Wolf C, Scrivener K, Habert G (2018) A sustainable future for the European Cement and Concrete Industry. ETH Zurich | es_ES |
dc.description.references | Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79. https://doi.org/10.1016/J.PAEROSCI.2008.11.001 | es_ES |
dc.description.references | Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling : a practical guide. Wiley, New York | es_ES |
dc.description.references | García-Segura T, Yepes V, Frangopol DM (2017) Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Struct Multidisc Optim 56:139–150. https://doi.org/10.1007/s00158-017-1653-0 | es_ES |
dc.description.references | Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment which comprises harmonised category indicators at midpoint and at the endpoint level | es_ES |
dc.description.references | GreenDelta (2013) PSILCA database. https://psilca.net/. Accessed 9 Jun 2020 | es_ES |
dc.description.references | International Electrotechnical Commission (IEC) (2014) IEC 61400-1 - Wind turbines - Part 1: Design requirements. Geneva, Switzerland | es_ES |
dc.description.references | International Organization for Standardization (ISO) (2019a) ISO 15392:2019 - Sustainability in buildings and civil engineering works—General principles. 2nd edn. Geneva | es_ES |
dc.description.references | International Organization for Standardization (ISO) (2019b) ISO 21931-2—sustainability in buildings and civil engineering works—framework for methods of assessment of the environmental, social and performance of construction works as a basis for sustainability assessment-Part 2: civil engineering works. Geneva | es_ES |
dc.description.references | Jahjouh MM, Arafa MH, Alqedra MA (2013) Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams. Struct Multidiscip Optim 47:963–979. https://doi.org/10.1007/s00158-013-0884-y | es_ES |
dc.description.references | Kirkpatrick AS, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671 | es_ES |
dc.description.references | Lee K-H, Kang D-H (2006) A robust optimization using the statistics based on kriging metamodel. J Mech Sci Technol 20:1169–1182. https://doi.org/10.1007/BF02916016 | es_ES |
dc.description.references | Lophaven SN, Nielsen HB, Søndergaard J (2002b) Aspects of the Matlab toolbox DACE. Informatics and Mathematical Modelling. Technical University of Denmark, Kongens Lyngby | es_ES |
dc.description.references | Lophaven SN, Nielsen HB, Søndergaard J (2002a) DACE: a matlab kriging toolbox. Version 2.0. Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby | es_ES |
dc.description.references | Mathern A, Steinholtz OS, Sjöberg A, Önnheim M, Ek K, Rempling R, Gustavsson E, Jirstrand M (2020) Multi-objective constrained Bayesian optimization for structural design. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02720-2 | es_ES |
dc.description.references | Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266 | es_ES |
dc.description.references | McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245. https://doi.org/10.1080/00401706.1979.10489755 | es_ES |
dc.description.references | Medina JR (2001) Estimation of incident and reflected waves using simulated annealing. J Waterw Port Coast Ocean Eng 127:213–221. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:4(213) | es_ES |
dc.description.references | Mergos PE, Mantoglou F (2020) Optimum design of reinforced concrete retaining walls with the flower pollination algorithm. Struct Multidiscip Optim 61:575–585. https://doi.org/10.1007/s00158-019-02380-x | es_ES |
dc.description.references | Penadés-Plà V, García-Segura T, Yepes V (2019) Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Eng Struct 179:556–565. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.015 | es_ES |
dc.description.references | Petek Gursel A, Masanet E, Horvath A, Stadel A (2014) Life-cycle inventory analysis of concrete production: a critical review. Cem Concr Compos 51:38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005 | es_ES |
dc.description.references | Ramesh T, Prakash R, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42:1592–1600. https://doi.org/10.1016/j.enbuild.2010.05.007 | es_ES |
dc.description.references | Rempling R, Mathern A, Tarazona Ramos D, Luis Fernández S (2019) Automatic structural design by a set-based parametric design method. Autom Constr 108:102936. https://doi.org/10.1016/j.autcon.2019.102936 | es_ES |
dc.description.references | Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17:129–150. https://doi.org/10.1007/PL00007198 | es_ES |
dc.description.references | Swedish Transport Agency (2018) TSFS 2018:57 -Transportstyrelsens föreskrifter och allmänna råd om tillämpning av eurokoder [The Swedish Transport Agency’s regulations and general advice on the application of Eurocodes] | es_ES |
dc.description.references | Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. In: International Energy Agency. Paris p 13 | es_ES |
dc.description.references | United Nations (2015) Transforming our world: the 2030 Agenda for Sustainable Development | es_ES |
dc.description.references | Wikells (2018) Sektionsfakta-NYB 18/19-Teknisk-ekonomisk sammanställning av byggdelar [Technical-economic overview of building components]. Wikells byggberäkningar, Växjö | es_ES |
dc.description.references | Yepes V, Martí JV, García-Segura T (2015) Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr 49:123–134. https://doi.org/10.1016/J.AUTCON.2014.10.013 | es_ES |
dc.description.references | Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |