- -

Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mathern, Alexandre es_ES
dc.contributor.author Penadés-Plà, Vicent es_ES
dc.contributor.author Armesto Barros, Jesús es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2022-01-24T19:29:42Z
dc.date.available 2022-01-24T19:29:42Z
dc.date.issued 2022-01-18 es_ES
dc.identifier.issn 1615-147X es_ES
dc.identifier.uri http://hdl.handle.net/10251/180137
dc.description.abstract [EN] In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational efforts low. A method is proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by Latin hypercube sampling. A multi-objective optimization is then performed to obtain the optimum designs for different weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method have a sustainability impact 8¿15% lower than the designs developed by traditional methods. es_ES
dc.description.sponsorship Open access funding provided by Chalmers University of Technology. This work was fnancially supported by Sweden's Innovation Agency (Grant Number: 2017-03312), the Swedish Transport Administration (Grant Number: BBT-2017- 037), the Swedish Wind Power Technology Centre (SWPTC), NCC, and Grant PID2020-117056RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Structural and Multidisciplinary Optimization es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multidisciplinary design optimization es_ES
dc.subject Structural design es_ES
dc.subject Kriging surrogate model es_ES
dc.subject Reinforced concrete structures es_ES
dc.subject Multi-criteria decision making es_ES
dc.subject Parametric design es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00158-021-03154-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117056RB-I00/ES/OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VINNOVA//2017-03312/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Swedish Transport Administration//BBT-2017-037/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Mathern, A.; Penadés-Plà, V.; Armesto Barros, J.; Yepes, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization. 65(46):1-16. https://doi.org/10.1007/s00158-021-03154-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00158-021-03154-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 46 es_ES
dc.relation.pasarela S\453455 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Swedish Transport Administration es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Swedish Wind Power Technology Centre es_ES
dc.contributor.funder Swedish Governmental Agency for Innovation Systems es_ES
dc.description.references Boscardin JT, Yepes V, Kripka M (2019) Optimization of reinforced concrete building frames with automated grouping of columns. Autom Constr 104:331–340. https://doi.org/10.1016/j.autcon.2019.04.024 es_ES
dc.description.references Boverket (2015) EKS 10-Boverkets författningssamling [Boverket’s regulations and general advice (2011: 10) on the application of European design standards (Eurocodes)]. (In Swedish) es_ES
dc.description.references Camp CV, Assadollahi A (2013) CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct Multidisc Optim 48:411–426. https://doi.org/10.1007/s00158-013-0897-6 es_ES
dc.description.references Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng Struct 48:363–372. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.004 es_ES
dc.description.references Catalonia Institute of Construction Technology (2020) BEDEC PR/PCT ITEC material database es_ES
dc.description.references Chalouhi EK, Pacoste C, Karoumi R (2020) Topological and size optimization of RC beam bridges: an automated design approach for cost effective and environmental friendly solutions. Nord Concr Res 61:53–78. https://doi.org/10.2478/ncr-2019-0017 es_ES
dc.description.references Chang H, Cheng X, Liu Z, Feng B, Zhan C (2016) Sample selection method for ship resistance performance optimization based on approximated model. J Sh Res 60:1–13. https://doi.org/10.5957/JOSR.60.1.140047 es_ES
dc.description.references Cressie N (1990) The origins of kriging. Math Geol 22:239–252. https://doi.org/10.1007/BF00889887 es_ES
dc.description.references DNV/Risø (2002) Guidelines for Design of Wind Turbines, 2nd ed. es_ES
dc.description.references Dassault Systèmes (2014) Abaqus 6.14 - Abaqus/CAE User’s Guide es_ES
dc.description.references Ecoinvent (2016) Ecoinvent v. 3.3. https://www.ecoinvent.org/database/ecoinvent-33/ecoinvent-33.html. Accessed 16 Jun 2020 es_ES
dc.description.references Eisfeldt F (2017) Soca v.1 add-on: adding social impact information to ecoinvent es_ES
dc.description.references Ek K, Mathern A, Rempling R, Rosén L, Claeson-Jonsson C, Brinkhoff P, Norin M (2019) Multi-criteria decision analysis methods to support sustainable infrastructure construction. In: International Association for Bridge and Structural Engineering (IABSE) es_ES
dc.description.references (ed) In: Proceedings of IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment ‐ Risk and Asset Management, March 27‐29, 2019. Guimarães, Portugal, pp 1084-1091 es_ES
dc.description.references European Committee for Standardization (CEN) (2002) EN 1991-1-1. Eurocode 1: Actions on structures - Part 1–1: General actions-densities, self-weight , imposed loads for buildings. Brussels es_ES
dc.description.references European Committee for Standardization (CEN) (2004a) EN 1992-1-1. Eurocode 2: design of concrete structures: Part 1-1: general rules and rules for buildings. Brussels es_ES
dc.description.references European Committee for Standardization (CEN) (2004b) EN 1997-1:2004. Eurocode 7: Geotechnical design—Part 1: general rules. Brussels es_ES
dc.description.references European Committee for Standardization (CEN) (2005) EN 1990:2002. Eurocode: Basis of structural design. Brussels es_ES
dc.description.references European Committee for Standardization (CEN) (2017) EN 15643-5:2017 - Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – Part 5: Framework on specific principles and requirement for civil engineering works. Brussels, Belgium es_ES
dc.description.references Favier A, De Wolf C, Scrivener K, Habert G (2018) A sustainable future for the European Cement and Concrete Industry. ETH Zurich es_ES
dc.description.references Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79. https://doi.org/10.1016/J.PAEROSCI.2008.11.001 es_ES
dc.description.references Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling : a practical guide. Wiley, New York es_ES
dc.description.references García-Segura T, Yepes V, Frangopol DM (2017) Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Struct Multidisc Optim 56:139–150. https://doi.org/10.1007/s00158-017-1653-0 es_ES
dc.description.references Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment which comprises harmonised category indicators at midpoint and at the endpoint level es_ES
dc.description.references GreenDelta (2013) PSILCA database. https://psilca.net/. Accessed 9 Jun 2020 es_ES
dc.description.references International Electrotechnical Commission (IEC) (2014) IEC 61400-1 - Wind turbines - Part 1: Design requirements. Geneva, Switzerland es_ES
dc.description.references International Organization for Standardization (ISO) (2019a) ISO 15392:2019 - Sustainability in buildings and civil engineering works—General principles. 2nd edn. Geneva es_ES
dc.description.references International Organization for Standardization (ISO) (2019b) ISO 21931-2—sustainability in buildings and civil engineering works—framework for methods of assessment of the environmental, social and performance of construction works as a basis for sustainability assessment-Part 2: civil engineering works. Geneva es_ES
dc.description.references Jahjouh MM, Arafa MH, Alqedra MA (2013) Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams. Struct Multidiscip Optim 47:963–979. https://doi.org/10.1007/s00158-013-0884-y es_ES
dc.description.references Kirkpatrick AS, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671 es_ES
dc.description.references Lee K-H, Kang D-H (2006) A robust optimization using the statistics based on kriging metamodel. J Mech Sci Technol 20:1169–1182. https://doi.org/10.1007/BF02916016 es_ES
dc.description.references Lophaven SN, Nielsen HB, Søndergaard J (2002b) Aspects of the Matlab toolbox DACE. Informatics and Mathematical Modelling. Technical University of Denmark, Kongens Lyngby es_ES
dc.description.references Lophaven SN, Nielsen HB, Søndergaard J (2002a) DACE: a matlab kriging toolbox. Version 2.0. Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby es_ES
dc.description.references Mathern A, Steinholtz OS, Sjöberg A, Önnheim M, Ek K, Rempling R, Gustavsson E, Jirstrand M (2020) Multi-objective constrained Bayesian optimization for structural design. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02720-2 es_ES
dc.description.references Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266 es_ES
dc.description.references McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245. https://doi.org/10.1080/00401706.1979.10489755 es_ES
dc.description.references Medina JR (2001) Estimation of incident and reflected waves using simulated annealing. J Waterw Port Coast Ocean Eng 127:213–221. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:4(213) es_ES
dc.description.references Mergos PE, Mantoglou F (2020) Optimum design of reinforced concrete retaining walls with the flower pollination algorithm. Struct Multidiscip Optim 61:575–585. https://doi.org/10.1007/s00158-019-02380-x es_ES
dc.description.references Penadés-Plà V, García-Segura T, Yepes V (2019) Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Eng Struct 179:556–565. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.015 es_ES
dc.description.references Petek Gursel A, Masanet E, Horvath A, Stadel A (2014) Life-cycle inventory analysis of concrete production: a critical review. Cem Concr Compos 51:38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005 es_ES
dc.description.references Ramesh T, Prakash R, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42:1592–1600. https://doi.org/10.1016/j.enbuild.2010.05.007 es_ES
dc.description.references Rempling R, Mathern A, Tarazona Ramos D, Luis Fernández S (2019) Automatic structural design by a set-based parametric design method. Autom Constr 108:102936. https://doi.org/10.1016/j.autcon.2019.102936 es_ES
dc.description.references Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17:129–150. https://doi.org/10.1007/PL00007198 es_ES
dc.description.references Swedish Transport Agency (2018) TSFS 2018:57 -Transportstyrelsens föreskrifter och allmänna råd om tillämpning av eurokoder [The Swedish Transport Agency’s regulations and general advice on the application of Eurocodes] es_ES
dc.description.references Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. In: International Energy Agency. Paris p 13 es_ES
dc.description.references United Nations (2015) Transforming our world: the 2030 Agenda for Sustainable Development es_ES
dc.description.references Wikells (2018) Sektionsfakta-NYB 18/19-Teknisk-ekonomisk sammanställning av byggdelar [Technical-economic overview of building components]. Wikells byggberäkningar, Växjö es_ES
dc.description.references Yepes V, Martí JV, García-Segura T (2015) Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr 49:123–134. https://doi.org/10.1016/J.AUTCON.2014.10.013 es_ES
dc.description.references Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem