- -

Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations

Mostrar el registro completo del ítem

Mathern, A.; Penadés-Plà, V.; Armesto Barros, J.; Yepes, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization. 65(46):1-16. https://doi.org/10.1007/s00158-021-03154-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180137

Ficheros en el ítem

Metadatos del ítem

Título: Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations
Autor: Mathern, Alexandre Penadés-Plà, Vicent Armesto Barros, Jesús Yepes, V.
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational ...[+]
Palabras clave: Multidisciplinary design optimization , Structural design , Kriging surrogate model , Reinforced concrete structures , Multi-criteria decision making , Parametric design
Derechos de uso: Reconocimiento (by)
Fuente:
Structural and Multidisciplinary Optimization. (issn: 1615-147X )
DOI: 10.1007/s00158-021-03154-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00158-021-03154-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117056RB-I00/ES/OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
info:eu-repo/grantAgreement/VINNOVA//2017-03312/
info:eu-repo/grantAgreement/Swedish Transport Administration//BBT-2017-037/
Agradecimientos:
Open access funding provided by Chalmers University of Technology. This work was fnancially supported by Sweden's Innovation Agency (Grant Number: 2017-03312), the Swedish Transport Administration (Grant Number: BBT-2017- 037), ...[+]
Tipo: Artículo

References

Boscardin JT, Yepes V, Kripka M (2019) Optimization of reinforced concrete building frames with automated grouping of columns. Autom Constr 104:331–340. https://doi.org/10.1016/j.autcon.2019.04.024

Boverket (2015) EKS 10-Boverkets författningssamling [Boverket’s regulations and general advice (2011: 10) on the application of European design standards (Eurocodes)]. (In Swedish)

Camp CV, Assadollahi A (2013) CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct Multidisc Optim 48:411–426. https://doi.org/10.1007/s00158-013-0897-6 [+]
Boscardin JT, Yepes V, Kripka M (2019) Optimization of reinforced concrete building frames with automated grouping of columns. Autom Constr 104:331–340. https://doi.org/10.1016/j.autcon.2019.04.024

Boverket (2015) EKS 10-Boverkets författningssamling [Boverket’s regulations and general advice (2011: 10) on the application of European design standards (Eurocodes)]. (In Swedish)

Camp CV, Assadollahi A (2013) CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct Multidisc Optim 48:411–426. https://doi.org/10.1007/s00158-013-0897-6

Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng Struct 48:363–372. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.004

Catalonia Institute of Construction Technology (2020) BEDEC PR/PCT ITEC material database

Chalouhi EK, Pacoste C, Karoumi R (2020) Topological and size optimization of RC beam bridges: an automated design approach for cost effective and environmental friendly solutions. Nord Concr Res 61:53–78. https://doi.org/10.2478/ncr-2019-0017

Chang H, Cheng X, Liu Z, Feng B, Zhan C (2016) Sample selection method for ship resistance performance optimization based on approximated model. J Sh Res 60:1–13. https://doi.org/10.5957/JOSR.60.1.140047

Cressie N (1990) The origins of kriging. Math Geol 22:239–252. https://doi.org/10.1007/BF00889887

DNV/Risø (2002) Guidelines for Design of Wind Turbines, 2nd ed.

Dassault Systèmes (2014) Abaqus 6.14 - Abaqus/CAE User’s Guide

Ecoinvent (2016) Ecoinvent v. 3.3. https://www.ecoinvent.org/database/ecoinvent-33/ecoinvent-33.html. Accessed 16 Jun 2020

Eisfeldt F (2017) Soca v.1 add-on: adding social impact information to ecoinvent

Ek K, Mathern A, Rempling R, Rosén L, Claeson-Jonsson C, Brinkhoff P, Norin M (2019) Multi-criteria decision analysis methods to support sustainable infrastructure construction. In: International Association for Bridge and Structural Engineering (IABSE)

(ed) In: Proceedings of IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment ‐ Risk and Asset Management, March 27‐29, 2019. Guimarães, Portugal, pp 1084-1091

European Committee for Standardization (CEN) (2002) EN 1991-1-1. Eurocode 1: Actions on structures - Part 1–1: General actions-densities, self-weight , imposed loads for buildings. Brussels

European Committee for Standardization (CEN) (2004a) EN 1992-1-1. Eurocode 2: design of concrete structures: Part 1-1: general rules and rules for buildings. Brussels

European Committee for Standardization (CEN) (2004b) EN 1997-1:2004. Eurocode 7: Geotechnical design—Part 1: general rules. Brussels

European Committee for Standardization (CEN) (2005) EN 1990:2002. Eurocode: Basis of structural design. Brussels

European Committee for Standardization (CEN) (2017) EN 15643-5:2017 - Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – Part 5: Framework on specific principles and requirement for civil engineering works. Brussels, Belgium

Favier A, De Wolf C, Scrivener K, Habert G (2018) A sustainable future for the European Cement and Concrete Industry. ETH Zurich

Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79. https://doi.org/10.1016/J.PAEROSCI.2008.11.001

Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling : a practical guide. Wiley, New York

García-Segura T, Yepes V, Frangopol DM (2017) Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Struct Multidisc Optim 56:139–150. https://doi.org/10.1007/s00158-017-1653-0

Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment which comprises harmonised category indicators at midpoint and at the endpoint level

GreenDelta (2013) PSILCA database. https://psilca.net/. Accessed 9 Jun 2020

International Electrotechnical Commission (IEC) (2014) IEC 61400-1 - Wind turbines - Part 1: Design requirements. Geneva, Switzerland

International Organization for Standardization (ISO) (2019a) ISO 15392:2019 - Sustainability in buildings and civil engineering works—General principles. 2nd edn. Geneva

International Organization for Standardization (ISO) (2019b) ISO 21931-2—sustainability in buildings and civil engineering works—framework for methods of assessment of the environmental, social and performance of construction works as a basis for sustainability assessment-Part 2: civil engineering works. Geneva

Jahjouh MM, Arafa MH, Alqedra MA (2013) Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams. Struct Multidiscip Optim 47:963–979. https://doi.org/10.1007/s00158-013-0884-y

Kirkpatrick AS, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671

Lee K-H, Kang D-H (2006) A robust optimization using the statistics based on kriging metamodel. J Mech Sci Technol 20:1169–1182. https://doi.org/10.1007/BF02916016

Lophaven SN, Nielsen HB, Søndergaard J (2002b) Aspects of the Matlab toolbox DACE. Informatics and Mathematical Modelling. Technical University of Denmark, Kongens Lyngby

Lophaven SN, Nielsen HB, Søndergaard J (2002a) DACE: a matlab kriging toolbox. Version 2.0. Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby

Mathern A, Steinholtz OS, Sjöberg A, Önnheim M, Ek K, Rempling R, Gustavsson E, Jirstrand M (2020) Multi-objective constrained Bayesian optimization for structural design. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02720-2

Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245. https://doi.org/10.1080/00401706.1979.10489755

Medina JR (2001) Estimation of incident and reflected waves using simulated annealing. J Waterw Port Coast Ocean Eng 127:213–221. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:4(213)

Mergos PE, Mantoglou F (2020) Optimum design of reinforced concrete retaining walls with the flower pollination algorithm. Struct Multidiscip Optim 61:575–585. https://doi.org/10.1007/s00158-019-02380-x

Penadés-Plà V, García-Segura T, Yepes V (2019) Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Eng Struct 179:556–565. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.015

Petek Gursel A, Masanet E, Horvath A, Stadel A (2014) Life-cycle inventory analysis of concrete production: a critical review. Cem Concr Compos 51:38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

Ramesh T, Prakash R, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42:1592–1600. https://doi.org/10.1016/j.enbuild.2010.05.007

Rempling R, Mathern A, Tarazona Ramos D, Luis Fernández S (2019) Automatic structural design by a set-based parametric design method. Autom Constr 108:102936. https://doi.org/10.1016/j.autcon.2019.102936

Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17:129–150. https://doi.org/10.1007/PL00007198

Swedish Transport Agency (2018) TSFS 2018:57 -Transportstyrelsens föreskrifter och allmänna råd om tillämpning av eurokoder [The Swedish Transport Agency’s regulations and general advice on the application of Eurocodes]

Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. In: International Energy Agency. Paris p 13

United Nations (2015) Transforming our world: the 2030 Agenda for Sustainable Development

Wikells (2018) Sektionsfakta-NYB 18/19-Teknisk-ekonomisk sammanställning av byggdelar [Technical-economic overview of building components]. Wikells byggberäkningar, Växjö

Yepes V, Martí JV, García-Segura T (2015) Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr 49:123–134. https://doi.org/10.1016/J.AUTCON.2014.10.013

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem