- -

Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis

Mostrar el registro completo del ítem

Gomez Selles, E.; Briones-Hidrovo, A.; Del Teso-March, R.; Uche Marcuello, FJ.; Cabrera Marcet, E. (2021). Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis. Water Resources Management. 35(10):3203-3220. https://doi.org/10.1007/s11269-021-02885-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180140

Ficheros en el ítem

Metadatos del ítem

Título: Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis
Autor: Gomez Selles, Elena Briones-Hidrovo, Andrei Del Teso-March, Roberto Uche Marcuello, Francisco Javier Cabrera Marcet, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The layouts of most urban water systems are known. A head tank with an appropriate elevation is used to supply water through the network at a pressure equal (or higher) to that set by the relevant standards. Furthermore, ...[+]
Palabras clave: Water distribution systems , Energy efficiency , Water tank , Life cycle cost
Derechos de uso: Reconocimiento (by)
Fuente:
Water Resources Management. (issn: 0920-4741 )
DOI: 10.1007/s11269-021-02885-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11269-021-02885-5
Tipo: Artículo

References

Batchabani E, Fuamba M (2014) Optimal Tank Design in Water Distribution Networks: Review of Literature and Perspectives. J Water Resour Plan Manag 140(2):136–145

BOE (Boletín Oficial del Estado) (2020) Circular 3, 2020, de 15 de enero, de la Comisión Nacional de los Mercados y la Competencia, por la que se establece la metodología para el cálculo de los peajes de transporte y distribución de electricidad. BOE, 24 de enero de, 2020. Agencia Estatal Boletín Oficial del Estado, Madrid, pp 6953–6980

Cabrera E, Pardo MA, Cabrera Jr. E, Cobacho R (2010) Agua y energía en España. Un reto complejo y fascinante. Ingeniería del Agua 17(3):235–245 [+]
Batchabani E, Fuamba M (2014) Optimal Tank Design in Water Distribution Networks: Review of Literature and Perspectives. J Water Resour Plan Manag 140(2):136–145

BOE (Boletín Oficial del Estado) (2020) Circular 3, 2020, de 15 de enero, de la Comisión Nacional de los Mercados y la Competencia, por la que se establece la metodología para el cálculo de los peajes de transporte y distribución de electricidad. BOE, 24 de enero de, 2020. Agencia Estatal Boletín Oficial del Estado, Madrid, pp 6953–6980

Cabrera E, Pardo MA, Cabrera Jr. E, Cobacho R (2010) Agua y energía en España. Un reto complejo y fascinante. Ingeniería del Agua 17(3):235–245

Cabrera E, Gómez E, Soriano J, del Teso R (2019) Eco-layouts in water distribution networks. J Water Resour Plann Manage 145(1):04018088. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001024

Clark RM, Abdesaken F, Boulos PF, Mau RE (1996) Mixing in distribution system storage tanks: Its effect on water quality. J Environ Eng 122(9):814–821

Dias AS, Kim H, Sivakumar PK et al (2013) Life cycle assessment: A comparison of manufacturing and remanufacturing processes of a diesel engine. Re-Engineering Manuf Sustain - Proc 20th CIRP Int Conf Life Cycle Eng 675–678

EPA (Environmental Protection Agency) (2002) Finished Water Storage Facilities. US Environmental Protection Agency. Office of Ground Water and Drinking Water. Washington

Everhart GJ (2010) Comparison of life-cycle energy of water storage tanks. University of Florida

Gómez E, Cabrera E, Balaguer M, Soriano J (2015) Direct and indirect water supply: An energy assessment. Proc Eng 119:1088–1097. https://doi.org/10.1016/j.proeng.2015.08.941

Grundfos (2019) Horizontal split case pumps. Booklet Data. Bjerringbro, Denmark

Jens N, Anders N (2014) Water supply in tall buildings: Roof tanks vs. pressurized systems. Grundfos Water Boosting. Grundfos. Denmark

Nee AYC (Editor) (2015) Handbook of Manufacturing Engineering and Technology, First. Springer London Heidelberg New York Dordrecht, Singapore

Petit-Boix A, Roigé N, de la Fuente A, Pujadas P, Gabarrell X, Rieradevall J, Josa A (2016) Integrated Structural Analysis and Life Cycle Assessment of Equivalent Trench-Pipe Systems for Sewerage. Water Resour Manage 2016(30):1117–1130. https://doi.org/10.1007/s11269-015-1214-5

Pillot J, Catel J, Renaud E, Augeard B, Roux P (2016) Up to what point is loss reduction environmentally friendly?: The LCA of loss reduction scenarios in drinking water networks Water Research 104:231–241

Raluy RG, Serra L, Uche J, Valero A (2005) Life Cycle Assessment of Water Production Technologies Part 2: Reverse Osmosis Desalination versus the Ebro River Water Transfer. Int J LCA 10(5):346–354

Rossman LA, Uber JG, Grayman WM (1995) Modeling disinfectant residuals in drinking-water storage tanks. J Environ Eng 121(10):752

Rossman LA (2000) Epanet2. Users Manual. US EPA, Cincinnati. USA

Stokes J, Horvath A (2006) Life Cycle Energy Assessment of Alternative Water Supply Systems (9 pp). The International Journal of Life Cycle Assessment 11:335–343

SV (Sustainability Victoria) (2009) Energy Efficiency Best Practice Guide Pumping System. Sustainability Victoria. Melbourne. Australia

Tangsubkul N, Beavis P, Moore SJ, Lundie S, Waite TD (2005) Life Cycle Assessment of Water Recycling Technology. Water Resour Manage 19:521–537. https://doi.org/10.1007/s11269-005-5602-0

Uche J, Martinez A, Castellano C, Subiela V (2013) Life cycle analysis of urban water cycle in two Spanish areas: inland city and island area. Desalination Water Treat 51(1):280–291. https://doi.org/10.1080/19443994.2012.716634

Uche J, Martínez-Gracia A, Carmona U (2014) Life Cycle Assessment of the Supply and Use of Water in the Segura Basin Int J Life Cycle Assess 19:688–704. https://doi.org/10.1007/s11367-013-0677-y

Walski TM (2000) Hydraulic design of water distribution storage tanks. Water distribution systems handbook, 10, McGraw-Hill, New York, pp 10.1–10.20

Walski TM (2012) Planning-level capital cost estimates for pumping. J Water Resources Planning and Management. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000167,307-310

WC (Water Corporation) (2017) Design Standard No. DS 61. Water Supply Distribution - Tanks. October 2017. Water Corporation. Osborne Park. Australia

Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-ruiz E, Weidema B (2016) The ecoinvent database version 3 ( part I ): overview and methodology. Int J Life Cycle Assess 3:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

WHO (World Health Organization) (2017) Principles and practices of drinking-water chlorination: a guide to strengthening chlorination practices in small-to medium sized. World Health Organization. Regional Office for South East Asia. New Delhi, India

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem