- -

A Self-Training Framework for Glaucoma Grading In OCT B-Scans

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Self-Training Framework for Glaucoma Grading In OCT B-Scans

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Pardo, José Gabriel es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Verdú-Monedero, Rafael es_ES
dc.contributor.author Dolz, Jose es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-01-28T06:54:15Z
dc.date.available 2022-01-28T06:54:15Z
dc.date.issued 2021-08-27 es_ES
dc.identifier.isbn 978-9-0827-9706-0 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180300
dc.description.abstract [EN] In this paper, we present a self-training-based framework for glaucoma grading using OCT B-scans under the presence of domain shift. Particularly, the proposed two-step learning methodology resorts to pseudo-labels generated during the first step to augment the training dataset on the target domain, which is then used to train the final target model. This allows transferring knowledge-domain from the unlabeled data. Additionally, we propose a novel glaucoma-specific backbone which introduces residual and attention modules via skip-connections to refine the embedding features of the latent space. By doing this, our model is capable of improving state-of-the-art from a quantitative and interpretability perspective. The reported results demonstrate that the proposed learning strategy can boost the performance of the model on the target dataset without incurring in additional annotation steps, by using only labels from the source examples. Our model consistently outperforms the baseline by 1¿3% across different metrics and bridges the gap with respect to training the model on the labeled target data. es_ES
dc.description.sponsorship We gratefully acknowledge the support of the Generalitat Valenciana (GVA) for the donation of the DGX A100 used for this work, action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020 (IDIFEDER/2020/030). es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 29th European Signal Processing Conference (EUSIPCO 2021). Proceedings es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glaucoma grading es_ES
dc.subject Self-training es_ES
dc.subject OCT es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A Self-Training Framework for Glaucoma Grading In OCT B-Scans es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.23919/EUSIPCO54536.2021.9616159 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PTA2017-14610-I//AYUDA TECNICO DE APOYO MINISTERIO-GARCIA PARDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Pardo, JG.; Colomer, A.; Verdú-Monedero, R.; Dolz, J.; Naranjo Ornedo, V. (2021). A Self-Training Framework for Glaucoma Grading In OCT B-Scans. IEEE. 1281-1285. https://doi.org/10.23919/EUSIPCO54536.2021.9616159 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 29th European Signal Processing Conference (EUSIPCO 2021) es_ES
dc.relation.conferencedate Agosto 23-27,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.23919/EUSIPCO54536.2021.9616159 es_ES
dc.description.upvformatpinicio 1281 es_ES
dc.description.upvformatpfin 1285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\445151 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem