Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:86253–73.
Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93(6):682–93.
Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97.
[+]
Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:86253–73.
Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93(6):682–93.
Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97.
Giannini EG, Testa R, Savarinom V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79.
Peters C, Shapiro EG, Krivit W. Hurler syndrome: past, present, and future. J Pediatr. 1998;133(1):7–9.
Rodriguez M, O'Brien JS, Garrett RS, Powell HC. Canine GM1 gangliosidosis: an ultrastructural and biochemical study. J Neuropathol Exp Neurol. 1982;41(6):618–29.
Cozma C, Eichler S, Wittmann G, Flores Bonet A, Kramp G, Giese AK, et al. Diagnosis of Morquio syndrome in dried blood spots based on a new MRM-MS assay. PLoS One. 2015;10(7):e0131228.
Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A. 1970;66(2):302–9.
Holtzman D, Ulrich J. Senescent glia spell trouble in Alzheimer’s disease. Nat Neurosci. 2019;22(5):683–4.
Robert L, Fulop T. Aging: facts and theories. Indian J Med Res. 2016;143(3):385–6.
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.
Biran A, Zada L, Karam PA, Vadai E, Roitman L, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.
Grynkiewicz G, Poenie M, Tsien RY, Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly fluorescence properties. J Biol Chem. 1985;260(6):3440–50.
de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–66.
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108(5):1517–49.
Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods. 2011;8(8):642–5.
Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40.
Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev. 2000;205(1):3–40.
Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev. 2015;115(11):5014–55.
Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59(29):11717–31.
Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater. 2018;30(49):e1801778.
Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141(27):10581–4.
Wei H, Wu G, Tian X, Liu Z. Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem. 2018;10(23):2729–44.
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev. 2018;47(18):7140–80.
Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.
Roth ME, Green O, Gnaim S, Shabat D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem Rev. 2016;116(3):1309–52.
Zhang J, Cheng P, Pu K. Recent advances of molecular optical probes in imaging of β-galactosidase. Bioconjug Chem. 2019;30(8):2089–101.
Rotman B. Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91.
Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6.
Mandal PK, Cattiaux L, Bensimon D, Mallet JM. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient. Carbohydr Res. 2012;358(40):40–6.
Stracean R, Wooda J, Irschmann R. Synthesis and properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-galactoside (galactoside of 4-methylumbelliferone). J Org Chem. 1962;27(3):1074–5.
Gee KR, Sun WC, Bhalgat KM, Upson RH, Klaubert DH, Latham KA, et al. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem. 1999;273(1):41–8.
Chilvers KF, Perry JD, James AL, Reed RH. Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J Appl Microbiol. 2001;91(6):1118–30.
Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4.
Na SY, Kim HJ. Fused oxazolidine-based dual optical probe for galactosidase with a dramatic chromogenic and fluorescence turn-on effect. Dyes Pigments. 2016;134:526–30.
Corey PE, Trimmer RW, Biddlecom WG. A new chromogenic β-Galactosidase substrate: 7-β-D-galactopyranosyloxy-9,9-dimethyl-9H-acridin-2-one. Angew Chem Int Ed. 1991;30(12):1646–8.
Wang P, Du J, Liu H, Bi G, Zhang G. Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst. 2016;141:1483–7.
Otsubo T, Minami A, Fujii H, Taguchi R, Takahashi T, Suzuki T, et al. 2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-d-galactosidase activities. Bioorg Med Chem Lett. 2013;23(7):2245–9.
Sun C, Zhang X, Tanga M, Liu L, Shi L, Gao C, et al. New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta. 194:164–70.
Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, et al. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes. Anal Chem. 2015;87(17):9061–9.
Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for cytochemical demonstration of enzyme activity. i. some substituted 3-Indolyl-β-D-glycopyranosides. Med Chem. 1964;7(4):574–5.
Ho NH, Weissleder R, Tung CH. A self-immolative reporter for beta-galactosidase sensing. ChemBioChem. 2007;8(5):560–6.
Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, et al. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B. 2017;5(26):5120–7.
Xie X, Liana Y, Xiao L, Weia L. Facile and label-free fluorescence sensing of β-galactosidase activity by graphene quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118594.
Hu Q, Ma K, Mei Y, He M, Kong J, Zhang X. Metal-to-ligand charge-transfer: applications to visual detection of β-galactosidase activity and sandwich immunoassay. Talanta. 2017;167:253–9.
Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127(13):4888–94.
Komatsu T, Kikuchi K, Takakusa H, Hanaoka K, Ueno T, Kamiya M, et al. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc. 2006;128(50):15946–7.
Koide Y, Urano Y, Yatsushige A, Hanaoka K, Terai T, Nagano T. Design and development of enzymatically activatable photosensitizer based on unique characteristics of thiazole orange. J Am Chem Soc. 2009;131(17):6058–9.
Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraiab T, Nagano T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun. 2011;47(14):4162–4.
Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J Am Chem Soc. 2011;133(33):12960–3.
Han J, Han MS, Tung CH. A fluorogenic probe for β-galactosidase activity imaging in living cells. Mol BioSyst. 2013;9(12):3001–8.
Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. J Mater Chem B. 2015;3(47):9168–72.
Tseng JC, Kung AL. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J Biomed Sci. 2015;22(1):45.
Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. Bioconjug Chem. 2016;27(2):474–80.
Wei X, Hu XX, Zhang LL, Li J, Wang J. et al. Highly selective and sensitive FRET based ratiometric two-photon fluorescent probe for endogenous β-galactosidase detection in living cells and tissues Microchem. J. 2020;157:105046.
Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, et al. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated pro-probes. Chem Commun. 2016;52(89):13086–9.
Jiang G, Zeng G, Zhu W, Li Y, Dong X, Zhang G, et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem Commun. 2017;53(32):4505–8.
Yang W, Zhao X, Zhang Y, Zhou Y, Fan S, Sheng H, et al. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. Dyes Pigments. 2018;156:100–7.
Li Y, Ning L, Yuan F, Zhang F, Zhang J, Xu Z, et al. Activatable formation of emissive excimers for highly selective detection of β-galactosidase. Anal Chem. 2020;92(8):5733–40.
Huang J, Li N, Wang Q, Gu Y, Wang P. A lysosome-targetable and two-photon fluorescent probe for imaging endogenous β-galactosidase in living ovarian cancer cells. Sensor Actuat B-Chem. 2017;246:833–9.
Chen X, Zhang X, Ma X, Zhang Y, Gao G, Liu J, et al. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging. Talanta. 2019;192:308–13.
Fu W, Yan C, Zhang Y, Ma Y, Guo Z, Zhu WH. Near-infrared aggregation-induced emission-active probe enables in situ and long-term tracking of endogenous β-galactosidase activity. Front Chem. 2019;7:291–302.
Zhang X, Chen X, Zhang Y, Liu K, Shen H, et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Anal Bioanal Chem. 2019;411:7957–66.
Chen M, Mu L, Cao X, She G, Shi W. A novel ratiometric fluorescent probe for highly sensitive and selective detection of β-galactosidase in living cells. Chin J Chem. 2019;37(4):330–6.
Kong X, Li M, Dong B, Yin Y, Song W, Lin W. An ultrasensitivity fluorescent probe based on the ict-fret dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem. 2019;91(24):15591–8.
Lee HW, Lim CS, Choi H, Cho MK, Noh CH, Lee K, et al. Discrimination between human colorectal neoplasms with a dual-recognitive two-photon probe. Anal Chem. 2019;91(22):14705–11.
Zhao X, Yang W, Fan S, Zhou Y, Sheng H, Cao Y, et al. A hemicyanine-based colorimetric turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. J Lumin. 2019;205:310–7.
Li X, Pan Y, Chen H, Duan Y, Zhou S, Wu W, et al. Specific near-infrared probe for ultrafast imaging of lysosomal β-galactosidase in ovarian cancer cells. Anal Chem. 2020;92(8):5772–9.
Long R, Tang C, Yang Z, Fu Q, Xu J, Tong C, et al. A natural hyperoside based novel light-up fluorescent probe with AIE and ESIPT characteristics for on-site and long-term imaging of β-galactosidase in living cells. J Mater Chem C. 2020;8(34):11860–5.
Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J Mater Chem B. 2017;5(10):1971–9.
Wang W, Vellaisamy K, Li W, Wu C, Ko CN, Leung CL, et al. Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem. 2017;89(21):11679–84.
James AL, Perry JD, Ford M, Armstrong L, Gould FK. Evaluation of cyclohexenoesculetin-beta-D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl Environ Microbiol. 1996;62(10):3868–70.
James AL, Perry JD, Chilvers K, Robson IS, Armstrong L, Orr KE. Alizarin-beta-D-galactoside: a new substrate for the detection of bacterial beta-galactosidase. Lett Appl Microbiol. 2000;30(4):336–40.
Wei X, Wu Q, Zhang J, Zhang Y, Guo W, Chen M, et al. Synthesis of precipitating chromogenic/fluorogenic β-glucosidase/β-galactosidase substrates by a new method and their application in the visual detection of foodborne pathogenic bacteria. Chem Commun. 2017;53(1):103–6.
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.
Filho MS, Dao P, Gesson M, Martin AR, Benhida R. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity- application to the real-time monitoring of senescence in live cells. Analyst. 2018;143(11):2680–8.
Kim EJ, Podder A, Maiti M, Lee JM, Chung BG, Bhuniya S. Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sensor Actuat B-Chem. 2018;274:194–200.
Jiang J, Tan Q, Zhao S, Song H, Hua L, Xie H. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. Chem Commun. 2019;55(99):15000–3.
Qiu W, Li X, Shi D, Li X, Gao Y, Li J, et al. A rapid-response near-infrared fluorescent probe with large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes Pigments. 2020;182(99):108657.
Makau JN, Kitagawa A, Kitamura K, Yamaguchi T, Mizuta S. Design and development of an HBT-based ratiometric fluorescent probe to monitor stress-induced premature senescence. ACS Omega. 2020;5:11299–307.
Senter PD, Saulnier MG, Schreiber GJ, Hirschberg DL, Brown JP, Hellström I, et al. Antitumor effect of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci U S A. 1988;85(13):4842–6.
Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev. 2001;53(3):247–64.
Gu K, Xu Y, Li H, Guo Z, Zhu S, Shi P, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc. 2016;138(16):5334–40.
Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. 2004;64(5):1579–83.
Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM. Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods. 2006;3(4):295–301.
Oushiki D, Kojima H, Takahashi Y, Komatsu T, Terai T, Hanaoka K, et al. Near-infrared fluorescence probes for enzymes based on binding affinity modulation of squarylium dye scaffold. Anal Chem. 2012;84(10):4404–10.
Zhang XX, Wu H, Li P, Qu ZJ, Tan MQ, Han KL. A versatile two-photon fluorescent probe for ratiometric imaging E. coliβ-galactosidase in live cells and in vivo. Chem Commun. 2016;52(53):8283–6.
Kim EJ, Kumar R, Sharma A, Yoon B, Kim HM, Lee H, et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials. 2017;122:83–90.
Shi L, Yan C, Ma Y, Wang T, Guo Z, Zhu WH. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Chem Commun. 2019;55(82):12308–11.
Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew Chem Int Ed. 2018;57(26):7804–8.
Li Z, Ren M, Wang L, Dai L, Lin W. Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo. Sensor Actuat B-Chem. 2020;307:127643.
González-Gualda E, Pàez-Ribes M, Lozano-Torres B, Macias D, Wilson JR 3rd, González-López C, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020;19(4):e13142.
Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J Am Chem Soc. 2017;139(26):8808–11.
Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-time in vivo detection of cellular senescence through the controlled release of the NIR fluorescent dye Nile blue. Angew Chem Int Ed. 2020;59(35):5152–6.
Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson KP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9:2102.
Chen JA, Guo W, Wang Z, Sun N, Pan H, Tan J, et al. In vivo imaging of senescent vascular cells in atherosclerotic mice using a β-galactosidase-activatable nanoprobe. Anal Chem. 2020;92(18):12613–21.
Liu J, Ma X, Cui C, Wang Y, Deenik PR, Cui L. A self-immobilizing NIR probe for non-invasive imaging of senescence. bioRxiv. 2020. https://doi.org/10.1101/2020.03.27.010827.
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116(2):561–718.
García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16(3):1902242–304.
Coll C, Bernardos A, Martínez-Máñez R, Sancenón F. Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res. 2013;46(2):339–49.
Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9):e9355.
Lozano-Torres B, Estepa-Fernández A, Rovira M, Orzáez M, Serrano M, Martínez-Máñez R, et al. The chemistry of senescence. Nat Rev Chem. 2019;3:426–41.
Mazur A, Kro’l JE, Marczak M, Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in rhizobium leguminosarum bv trifolii strain TA1. J Bacteriol. 2003;85(8):2503–11.
Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed. 2012;51(42):10556–60.
Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J, Ogawa M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat Commun. 2015;6:6463.
Sakabe M, Asanuma D, Kamiya M, Iwatate RI, Hanaoka K, Terai T, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc. 2013;135(1):409–14.
Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew Chem Int Ed. 2016;55(33):9620–4.
Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.
Chatterjee SK, Bhattacharya M, Barlow JJ. Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res. 1979;39:1943–51.
Wu C, Ni Z, Li P, Li Y, Pang X, Xie R, et al. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Talanta. 2020;219:121307.
Pang X, Li Y, Zhou Z, Lu Q, Xie R, Wu C, et al. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Talanta. 2020;217:121098.
Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells. Anal Chem. 2014;86(20):10001–5.
Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A, et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal Chim Acta. 2017;968:97–104.
Kamiya M, Kobayashi H, Hama Y, Koyama Y, Bernardo M, Nagano T, et al. An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc. 2007;129(13):3918–29.
Gnaim S, Green O, Shabat D. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores. Chem Commun. 2018;54(17):2073–85.
Galiana I, Lozano-Torres B, Sancho M, Alfonso M, Bernardos A, Bisbal V, et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. J Control Release. 2020;323:624–34.
Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainarob R, Shabat D. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging. Org. Biomol Chem. 2018;16(10):1708–12.
[-]