Mostrar el registro sencillo del ítem
dc.contributor.author | Lozano-Torres, Beatriz | es_ES |
dc.contributor.author | Blandez, Juan F. | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2022-01-28T07:41:07Z | |
dc.date.available | 2022-01-28T07:41:07Z | |
dc.date.issued | 2021-02-19 | es_ES |
dc.identifier.issn | 1618-2642 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180327 | |
dc.description.abstract | [EN] beta-Galactosidase (beta-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the beta-galactosides into monosaccharides. beta-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve beta-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of beta-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of beta-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The beta-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation beta-Gal-related diseases has boosted the research in this fertile field | es_ES |
dc.description.sponsorship | R.M laboratory members received the financial support from the Spanish Government (project RTI2018-100910-B-C41) and the Generalitat Valenciana (project PROMETEO 2018/024). B.L-T. received support from the Spanish Ministry of Economy for their PhD grants (FPU15/02707). J. F.-B received fellowship (CD19/00038) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Analytical and Bioanalytical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chromo-fluorogenic probes | es_ES |
dc.subject | Beta-Galactosidase detection | es_ES |
dc.subject | Cellular senescence | es_ES |
dc.subject | In vitro and in vivo detection | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Chromo-fluorogenic probes for beta-galactosidase detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00216-020-03111-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Instituto de Salud Carlos III//"CD19%2F00038"//Contrato Sara Borrell/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECYD//FPU15%2F02707//NUEVOS MATERIALES HIBRIDOS PARA LA DETECCION DE MARCADORES BIOLOGICOS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F024//SISTEMAS AVANZADOS DE LIBERACION CONTROLADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Lozano-Torres, B.; Blandez, JF.; Sancenón Galarza, F.; Martínez-Máñez, R. (2021). Chromo-fluorogenic probes for beta-galactosidase detection. Analytical and Bioanalytical Chemistry. 413(9):2361-2388. https://doi.org/10.1007/s00216-020-03111-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00216-020-03111-8 | es_ES |
dc.description.upvformatpinicio | 2361 | es_ES |
dc.description.upvformatpfin | 2388 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 413 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 33606064 | es_ES |
dc.relation.pasarela | S\444299 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | MINISTERIO DE EDUCACION | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:86253–73. | es_ES |
dc.description.references | Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93(6):682–93. | es_ES |
dc.description.references | Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97. | es_ES |
dc.description.references | Giannini EG, Testa R, Savarinom V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79. | es_ES |
dc.description.references | Peters C, Shapiro EG, Krivit W. Hurler syndrome: past, present, and future. J Pediatr. 1998;133(1):7–9. | es_ES |
dc.description.references | Rodriguez M, O'Brien JS, Garrett RS, Powell HC. Canine GM1 gangliosidosis: an ultrastructural and biochemical study. J Neuropathol Exp Neurol. 1982;41(6):618–29. | es_ES |
dc.description.references | Cozma C, Eichler S, Wittmann G, Flores Bonet A, Kramp G, Giese AK, et al. Diagnosis of Morquio syndrome in dried blood spots based on a new MRM-MS assay. PLoS One. 2015;10(7):e0131228. | es_ES |
dc.description.references | Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A. 1970;66(2):302–9. | es_ES |
dc.description.references | Holtzman D, Ulrich J. Senescent glia spell trouble in Alzheimer’s disease. Nat Neurosci. 2019;22(5):683–4. | es_ES |
dc.description.references | Robert L, Fulop T. Aging: facts and theories. Indian J Med Res. 2016;143(3):385–6. | es_ES |
dc.description.references | Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. | es_ES |
dc.description.references | Biran A, Zada L, Karam PA, Vadai E, Roitman L, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71. | es_ES |
dc.description.references | Grynkiewicz G, Poenie M, Tsien RY, Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly fluorescence properties. J Biol Chem. 1985;260(6):3440–50. | es_ES |
dc.description.references | de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–66. | es_ES |
dc.description.references | Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108(5):1517–49. | es_ES |
dc.description.references | Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods. 2011;8(8):642–5. | es_ES |
dc.description.references | Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40. | es_ES |
dc.description.references | Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev. 2000;205(1):3–40. | es_ES |
dc.description.references | Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev. 2015;115(11):5014–55. | es_ES |
dc.description.references | Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59(29):11717–31. | es_ES |
dc.description.references | Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater. 2018;30(49):e1801778. | es_ES |
dc.description.references | Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141(27):10581–4. | es_ES |
dc.description.references | Wei H, Wu G, Tian X, Liu Z. Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem. 2018;10(23):2729–44. | es_ES |
dc.description.references | Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev. 2018;47(18):7140–80. | es_ES |
dc.description.references | Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43. | es_ES |
dc.description.references | Roth ME, Green O, Gnaim S, Shabat D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem Rev. 2016;116(3):1309–52. | es_ES |
dc.description.references | Zhang J, Cheng P, Pu K. Recent advances of molecular optical probes in imaging of β-galactosidase. Bioconjug Chem. 2019;30(8):2089–101. | es_ES |
dc.description.references | Rotman B. Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91. | es_ES |
dc.description.references | Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6. | es_ES |
dc.description.references | Mandal PK, Cattiaux L, Bensimon D, Mallet JM. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient. Carbohydr Res. 2012;358(40):40–6. | es_ES |
dc.description.references | Stracean R, Wooda J, Irschmann R. Synthesis and properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-galactoside (galactoside of 4-methylumbelliferone). J Org Chem. 1962;27(3):1074–5. | es_ES |
dc.description.references | Gee KR, Sun WC, Bhalgat KM, Upson RH, Klaubert DH, Latham KA, et al. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem. 1999;273(1):41–8. | es_ES |
dc.description.references | Chilvers KF, Perry JD, James AL, Reed RH. Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J Appl Microbiol. 2001;91(6):1118–30. | es_ES |
dc.description.references | Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4. | es_ES |
dc.description.references | Na SY, Kim HJ. Fused oxazolidine-based dual optical probe for galactosidase with a dramatic chromogenic and fluorescence turn-on effect. Dyes Pigments. 2016;134:526–30. | es_ES |
dc.description.references | Corey PE, Trimmer RW, Biddlecom WG. A new chromogenic β-Galactosidase substrate: 7-β-D-galactopyranosyloxy-9,9-dimethyl-9H-acridin-2-one. Angew Chem Int Ed. 1991;30(12):1646–8. | es_ES |
dc.description.references | Wang P, Du J, Liu H, Bi G, Zhang G. Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst. 2016;141:1483–7. | es_ES |
dc.description.references | Otsubo T, Minami A, Fujii H, Taguchi R, Takahashi T, Suzuki T, et al. 2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-d-galactosidase activities. Bioorg Med Chem Lett. 2013;23(7):2245–9. | es_ES |
dc.description.references | Sun C, Zhang X, Tanga M, Liu L, Shi L, Gao C, et al. New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta. 194:164–70. | es_ES |
dc.description.references | Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, et al. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes. Anal Chem. 2015;87(17):9061–9. | es_ES |
dc.description.references | Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for cytochemical demonstration of enzyme activity. i. some substituted 3-Indolyl-β-D-glycopyranosides. Med Chem. 1964;7(4):574–5. | es_ES |
dc.description.references | Ho NH, Weissleder R, Tung CH. A self-immolative reporter for beta-galactosidase sensing. ChemBioChem. 2007;8(5):560–6. | es_ES |
dc.description.references | Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, et al. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B. 2017;5(26):5120–7. | es_ES |
dc.description.references | Xie X, Liana Y, Xiao L, Weia L. Facile and label-free fluorescence sensing of β-galactosidase activity by graphene quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118594. | es_ES |
dc.description.references | Hu Q, Ma K, Mei Y, He M, Kong J, Zhang X. Metal-to-ligand charge-transfer: applications to visual detection of β-galactosidase activity and sandwich immunoassay. Talanta. 2017;167:253–9. | es_ES |
dc.description.references | Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127(13):4888–94. | es_ES |
dc.description.references | Komatsu T, Kikuchi K, Takakusa H, Hanaoka K, Ueno T, Kamiya M, et al. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc. 2006;128(50):15946–7. | es_ES |
dc.description.references | Koide Y, Urano Y, Yatsushige A, Hanaoka K, Terai T, Nagano T. Design and development of enzymatically activatable photosensitizer based on unique characteristics of thiazole orange. J Am Chem Soc. 2009;131(17):6058–9. | es_ES |
dc.description.references | Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraiab T, Nagano T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun. 2011;47(14):4162–4. | es_ES |
dc.description.references | Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J Am Chem Soc. 2011;133(33):12960–3. | es_ES |
dc.description.references | Han J, Han MS, Tung CH. A fluorogenic probe for β-galactosidase activity imaging in living cells. Mol BioSyst. 2013;9(12):3001–8. | es_ES |
dc.description.references | Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. J Mater Chem B. 2015;3(47):9168–72. | es_ES |
dc.description.references | Tseng JC, Kung AL. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J Biomed Sci. 2015;22(1):45. | es_ES |
dc.description.references | Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. Bioconjug Chem. 2016;27(2):474–80. | es_ES |
dc.description.references | Wei X, Hu XX, Zhang LL, Li J, Wang J. et al. Highly selective and sensitive FRET based ratiometric two-photon fluorescent probe for endogenous β-galactosidase detection in living cells and tissues Microchem. J. 2020;157:105046. | es_ES |
dc.description.references | Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, et al. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated pro-probes. Chem Commun. 2016;52(89):13086–9. | es_ES |
dc.description.references | Jiang G, Zeng G, Zhu W, Li Y, Dong X, Zhang G, et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem Commun. 2017;53(32):4505–8. | es_ES |
dc.description.references | Yang W, Zhao X, Zhang Y, Zhou Y, Fan S, Sheng H, et al. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. Dyes Pigments. 2018;156:100–7. | es_ES |
dc.description.references | Li Y, Ning L, Yuan F, Zhang F, Zhang J, Xu Z, et al. Activatable formation of emissive excimers for highly selective detection of β-galactosidase. Anal Chem. 2020;92(8):5733–40. | es_ES |
dc.description.references | Huang J, Li N, Wang Q, Gu Y, Wang P. A lysosome-targetable and two-photon fluorescent probe for imaging endogenous β-galactosidase in living ovarian cancer cells. Sensor Actuat B-Chem. 2017;246:833–9. | es_ES |
dc.description.references | Chen X, Zhang X, Ma X, Zhang Y, Gao G, Liu J, et al. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging. Talanta. 2019;192:308–13. | es_ES |
dc.description.references | Fu W, Yan C, Zhang Y, Ma Y, Guo Z, Zhu WH. Near-infrared aggregation-induced emission-active probe enables in situ and long-term tracking of endogenous β-galactosidase activity. Front Chem. 2019;7:291–302. | es_ES |
dc.description.references | Zhang X, Chen X, Zhang Y, Liu K, Shen H, et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Anal Bioanal Chem. 2019;411:7957–66. | es_ES |
dc.description.references | Chen M, Mu L, Cao X, She G, Shi W. A novel ratiometric fluorescent probe for highly sensitive and selective detection of β-galactosidase in living cells. Chin J Chem. 2019;37(4):330–6. | es_ES |
dc.description.references | Kong X, Li M, Dong B, Yin Y, Song W, Lin W. An ultrasensitivity fluorescent probe based on the ict-fret dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem. 2019;91(24):15591–8. | es_ES |
dc.description.references | Lee HW, Lim CS, Choi H, Cho MK, Noh CH, Lee K, et al. Discrimination between human colorectal neoplasms with a dual-recognitive two-photon probe. Anal Chem. 2019;91(22):14705–11. | es_ES |
dc.description.references | Zhao X, Yang W, Fan S, Zhou Y, Sheng H, Cao Y, et al. A hemicyanine-based colorimetric turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. J Lumin. 2019;205:310–7. | es_ES |
dc.description.references | Li X, Pan Y, Chen H, Duan Y, Zhou S, Wu W, et al. Specific near-infrared probe for ultrafast imaging of lysosomal β-galactosidase in ovarian cancer cells. Anal Chem. 2020;92(8):5772–9. | es_ES |
dc.description.references | Long R, Tang C, Yang Z, Fu Q, Xu J, Tong C, et al. A natural hyperoside based novel light-up fluorescent probe with AIE and ESIPT characteristics for on-site and long-term imaging of β-galactosidase in living cells. J Mater Chem C. 2020;8(34):11860–5. | es_ES |
dc.description.references | Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J Mater Chem B. 2017;5(10):1971–9. | es_ES |
dc.description.references | Wang W, Vellaisamy K, Li W, Wu C, Ko CN, Leung CL, et al. Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem. 2017;89(21):11679–84. | es_ES |
dc.description.references | James AL, Perry JD, Ford M, Armstrong L, Gould FK. Evaluation of cyclohexenoesculetin-beta-D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl Environ Microbiol. 1996;62(10):3868–70. | es_ES |
dc.description.references | James AL, Perry JD, Chilvers K, Robson IS, Armstrong L, Orr KE. Alizarin-beta-D-galactoside: a new substrate for the detection of bacterial beta-galactosidase. Lett Appl Microbiol. 2000;30(4):336–40. | es_ES |
dc.description.references | Wei X, Wu Q, Zhang J, Zhang Y, Guo W, Chen M, et al. Synthesis of precipitating chromogenic/fluorogenic β-glucosidase/β-galactosidase substrates by a new method and their application in the visual detection of foodborne pathogenic bacteria. Chem Commun. 2017;53(1):103–6. | es_ES |
dc.description.references | Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96. | es_ES |
dc.description.references | Filho MS, Dao P, Gesson M, Martin AR, Benhida R. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity- application to the real-time monitoring of senescence in live cells. Analyst. 2018;143(11):2680–8. | es_ES |
dc.description.references | Kim EJ, Podder A, Maiti M, Lee JM, Chung BG, Bhuniya S. Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sensor Actuat B-Chem. 2018;274:194–200. | es_ES |
dc.description.references | Jiang J, Tan Q, Zhao S, Song H, Hua L, Xie H. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. Chem Commun. 2019;55(99):15000–3. | es_ES |
dc.description.references | Qiu W, Li X, Shi D, Li X, Gao Y, Li J, et al. A rapid-response near-infrared fluorescent probe with large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes Pigments. 2020;182(99):108657. | es_ES |
dc.description.references | Makau JN, Kitagawa A, Kitamura K, Yamaguchi T, Mizuta S. Design and development of an HBT-based ratiometric fluorescent probe to monitor stress-induced premature senescence. ACS Omega. 2020;5:11299–307. | es_ES |
dc.description.references | Senter PD, Saulnier MG, Schreiber GJ, Hirschberg DL, Brown JP, Hellström I, et al. Antitumor effect of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci U S A. 1988;85(13):4842–6. | es_ES |
dc.description.references | Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev. 2001;53(3):247–64. | es_ES |
dc.description.references | Gu K, Xu Y, Li H, Guo Z, Zhu S, Shi P, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc. 2016;138(16):5334–40. | es_ES |
dc.description.references | Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. 2004;64(5):1579–83. | es_ES |
dc.description.references | Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM. Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods. 2006;3(4):295–301. | es_ES |
dc.description.references | Oushiki D, Kojima H, Takahashi Y, Komatsu T, Terai T, Hanaoka K, et al. Near-infrared fluorescence probes for enzymes based on binding affinity modulation of squarylium dye scaffold. Anal Chem. 2012;84(10):4404–10. | es_ES |
dc.description.references | Zhang XX, Wu H, Li P, Qu ZJ, Tan MQ, Han KL. A versatile two-photon fluorescent probe for ratiometric imaging E. coliβ-galactosidase in live cells and in vivo. Chem Commun. 2016;52(53):8283–6. | es_ES |
dc.description.references | Kim EJ, Kumar R, Sharma A, Yoon B, Kim HM, Lee H, et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials. 2017;122:83–90. | es_ES |
dc.description.references | Shi L, Yan C, Ma Y, Wang T, Guo Z, Zhu WH. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Chem Commun. 2019;55(82):12308–11. | es_ES |
dc.description.references | Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew Chem Int Ed. 2018;57(26):7804–8. | es_ES |
dc.description.references | Li Z, Ren M, Wang L, Dai L, Lin W. Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo. Sensor Actuat B-Chem. 2020;307:127643. | es_ES |
dc.description.references | González-Gualda E, Pàez-Ribes M, Lozano-Torres B, Macias D, Wilson JR 3rd, González-López C, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020;19(4):e13142. | es_ES |
dc.description.references | Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J Am Chem Soc. 2017;139(26):8808–11. | es_ES |
dc.description.references | Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-time in vivo detection of cellular senescence through the controlled release of the NIR fluorescent dye Nile blue. Angew Chem Int Ed. 2020;59(35):5152–6. | es_ES |
dc.description.references | Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson KP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9:2102. | es_ES |
dc.description.references | Chen JA, Guo W, Wang Z, Sun N, Pan H, Tan J, et al. In vivo imaging of senescent vascular cells in atherosclerotic mice using a β-galactosidase-activatable nanoprobe. Anal Chem. 2020;92(18):12613–21. | es_ES |
dc.description.references | Liu J, Ma X, Cui C, Wang Y, Deenik PR, Cui L. A self-immobilizing NIR probe for non-invasive imaging of senescence. bioRxiv. 2020. https://doi.org/10.1101/2020.03.27.010827. | es_ES |
dc.description.references | Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116(2):561–718. | es_ES |
dc.description.references | García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16(3):1902242–304. | es_ES |
dc.description.references | Coll C, Bernardos A, Martínez-Máñez R, Sancenón F. Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res. 2013;46(2):339–49. | es_ES |
dc.description.references | Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9):e9355. | es_ES |
dc.description.references | Lozano-Torres B, Estepa-Fernández A, Rovira M, Orzáez M, Serrano M, Martínez-Máñez R, et al. The chemistry of senescence. Nat Rev Chem. 2019;3:426–41. | es_ES |
dc.description.references | Mazur A, Kro’l JE, Marczak M, Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in rhizobium leguminosarum bv trifolii strain TA1. J Bacteriol. 2003;85(8):2503–11. | es_ES |
dc.description.references | Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed. 2012;51(42):10556–60. | es_ES |
dc.description.references | Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J, Ogawa M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat Commun. 2015;6:6463. | es_ES |
dc.description.references | Sakabe M, Asanuma D, Kamiya M, Iwatate RI, Hanaoka K, Terai T, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc. 2013;135(1):409–14. | es_ES |
dc.description.references | Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew Chem Int Ed. 2016;55(33):9620–4. | es_ES |
dc.description.references | Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65. | es_ES |
dc.description.references | Chatterjee SK, Bhattacharya M, Barlow JJ. Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res. 1979;39:1943–51. | es_ES |
dc.description.references | Wu C, Ni Z, Li P, Li Y, Pang X, Xie R, et al. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Talanta. 2020;219:121307. | es_ES |
dc.description.references | Pang X, Li Y, Zhou Z, Lu Q, Xie R, Wu C, et al. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Talanta. 2020;217:121098. | es_ES |
dc.description.references | Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells. Anal Chem. 2014;86(20):10001–5. | es_ES |
dc.description.references | Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A, et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal Chim Acta. 2017;968:97–104. | es_ES |
dc.description.references | Kamiya M, Kobayashi H, Hama Y, Koyama Y, Bernardo M, Nagano T, et al. An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc. 2007;129(13):3918–29. | es_ES |
dc.description.references | Gnaim S, Green O, Shabat D. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores. Chem Commun. 2018;54(17):2073–85. | es_ES |
dc.description.references | Galiana I, Lozano-Torres B, Sancho M, Alfonso M, Bernardos A, Bisbal V, et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. J Control Release. 2020;323:624–34. | es_ES |
dc.description.references | Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainarob R, Shabat D. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging. Org. Biomol Chem. 2018;16(10):1708–12. | es_ES |