Mostrar el registro sencillo del ítem
dc.contributor.author | Hattebuhr, Maren | es_ES |
dc.contributor.author | Frank, Martin | es_ES |
dc.date.accessioned | 2022-02-01T09:04:35Z | |
dc.date.available | 2022-02-01T09:04:35Z | |
dc.date.issued | 2022-01-29 | |
dc.identifier.uri | http://hdl.handle.net/10251/180409 | |
dc.description.abstract | [EN] Climate change is subject to lively public discussions. Especially the question of whether climate change is manmade is a central point of contention. Since climatic processes are interleaved and complex, it is difficult to evaluate public, political or scientific statements. In this work, we look at mathematical models behind climate processes on a simplified level. We present a simple model of the Earth?s energy budged developed by high school students themselves during a project week. The model allows the students to compute the global Earth?s surface temperature and effects of varying solar activity and land surface changes. More precisely, the model describing the energy budget of the Earth forms a systems of partial differential equations and can be linked to compartment models. We show how this mathematically challenging question can be didactically reduced in such a way that students can be enabled to develop, solve and extend compartment models independently without having been taught the theoretical background. We implemented this course as an interactive online workshop and present our experiences with gifted student groups. We believe that our material presents an opportunity to demonstrate the power of mathematical modeling, to understand natural phenomena, and to critically reflect on discussions. | es_ES |
dc.description.abstract | [ES] El cambio climático es objeto de animados debates públicos. Especialmente la cuestión de si el cambio climático está provocado por el hombre es un punto central de controversia. Dado que los procesos climáticos están entrelazados y son complejos, es difícil evaluar las las declaraciones públicas, políticas o científicas. En este trabajo, examinamos los modelos matemáticos que subyacen a los procesos climáticos a un nivel simplificado. Presentamos un modelo sencillo del brote energético de la Tierra desarrollado por los propios estudiantes de secundaria durante una semana de proyectos. El modelo permite calcular la temperatura global de la superficie de la Tierra y los efectos de la variación de la actividad solar y los cambios en la superficie terrestre. Más concretamente, el modelo que describe el balance energético de la Tierra forma un sistema de ecuaciones diferenciales parciales y puede vincularse a modelos de compartimentos. Mostramos cómo esta cuestión matemáticamente difícil puede reducirse didácticamente de manera que los estudiantes puedan desarrollar, resolver y ampliar los modelos de compartimentos de forma independiente sin que se les haya enseñado la base teórica. Implementamos este curso como un taller interactivo en línea y presentamos nuestras experiencias con grupos de estudiantes superdotados. Creemos que nuestro material presenta una oportunidad para demostrar el poder de la modelización matemática, para comprender los fenómenos naturales y reflexionar críticamente sobre los debates. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Modelling in Science Education and Learning | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Compartment models | es_ES |
dc.subject | Human impact | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | High school students | es_ES |
dc.subject | Project week | es_ES |
dc.subject | Modelos compartimentales | es_ES |
dc.subject | Impacto humano | es_ES |
dc.subject | Cambio climático | es_ES |
dc.subject | Estudiantes de secundaria | es_ES |
dc.subject | Semana de proyectos | es_ES |
dc.title | Compartment models to study human impact on climate change | es_ES |
dc.title.alternative | Modelos compartimentales para estudiar el impacto humano en el cambio climático | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/msel.2022.16191 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Hattebuhr, M.; Frank, M. (2022). Compartment models to study human impact on climate change. Modelling in Science Education and Learning. 15(1):93-116. https://doi.org/10.4995/msel.2022.16191 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2022.16191 | es_ES |
dc.description.upvformatpinicio | 93 | es_ES |
dc.description.upvformatpfin | 116 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1988-3145 | |
dc.relation.pasarela | OJS\16191 | es_ES |
dc.description.references | Archer, D. (2012). Global warming - understanding the forecast (2nd ed.). Danvers, USA: Wiley. | es_ES |
dc.description.references | Burger, S. (2018). Absorption [Absorption]. Retrieved from https://wiki.bildungsserver.de/klimawandel/index.php/Absorption (Cited March 15, 2021) | es_ES |
dc.description.references | Cubasch, U. (2002). Variabilität der Sonne und Klimaschwankungen [Variability of the sun and climate fluctuations] (Deutscher Wetterdienst, Ed.). Offenbach am Main, Germany: Deutscher Wetterdienst. Retrieved from https://www.dwd.de/DE/leistungen/pbfb_verlag_promet/pdf_promethefte/28_3_4_pdf.pdf?__blob=publicationFile&v=3 (Cited March 15, 2021) | es_ES |
dc.description.references | Deutscher Wetterdienst. Wortlexikon - Solarkonstante [Word dictionary - Solar constant]. Retrieved from https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=102248&lv3=102520 (Cited March 15, 2021) | es_ES |
dc.description.references | European Commission. Causes of climate change. Retrieved from https://ec.europa.eu/clima/change/causes_en (Cited March 15, 2021) | es_ES |
dc.description.references | Hattebuhr, M. (2014). Entwicklung eines kompetenzorientierten Anforderungsprofils für die Teilnahme an der Modellierungswoche CAMMP week [Development of a competency-based requirements profile for participation in the modeling week CAMMP week] (Schriftliche Hausarbeit im Rahmen der Ersten Staatsprüfung für das Lehramt an Gymnasien und Gesamtschulen). RWTH Aachen University. | es_ES |
dc.description.references | Hattebuhr, M. (accepted). Gibt es den Klimawandel wirklich? - Statistische Analyse von realen Temperaturdaten [Does climate change really exist? - Statistical analysis of real temperature data]. In Martin Frank, Christina Roeckerath (Ed.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 9 (ISTRON) (1st ed.). Berlin, Germany: Springer-Verlag GmbH Germany. | es_ES |
dc.description.references | Hattebuhr, M., Frank, M., & Roeckerath, C. (2018). Komplexe Modellierung: Trump gegen die Wissenschaft - Gibt es den Klimawandel wirklich? [Complex modeling: Trump vs. science - Does climate change really exist?]. Beiträge zum Mathematikunterricht 2018. | es_ES |
dc.description.references | Hattebuhr, M., & Frank, M. (2019). Complex Modeling: Does climate change really exist? - Perspectives of a project day with high school students. Eleventh Congress of the European Society for Research in Mathematics Education. | es_ES |
dc.description.references | IPCC. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. A. Johnson, Ed.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. | es_ES |
dc.description.references | IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Ed.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. doi: 10.1017/CBO9781107415324 https://doi.org/10.1017/CBO9781107415324 | es_ES |
dc.description.references | IPCC. (2016). Klimaänderung 2014: Synthesebericht - Beitrag der Arbeitsgruppen I, II und III zum Fünften Sachstandsbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen (IPCC) [Climate Change 2014: Synthesis Report - Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)] (R. K. Pachauri, L. A. Meyer, Ed.). Genf, Schweiz: IPCC, Deutsche Übersetzung durch Deutsche IPCC-Koordinierungsstelle (Bonn). | es_ES |
dc.description.references | Kasang, D. (2014). Vulkanismus [Volcanism]. Retrieved from https://wiki.bildungsserver.de/klimawandel/index.php/Vulkanismus (Cited March 15, 2021) | es_ES |
dc.description.references | Kasang, D. (2019). Sonnenenergie [Solar energy]. Retrieved from https://wiki.bildungsserver.de/klimawandel/index.php/Sonnenenergie (Cited March 15, 2021) | es_ES |
dc.description.references | Kasang, D. (2020). Kohlendioxid Konzentration [Carbon dioxide concentration]. Retrieved from https://wiki.bildungsserver.de/klimawandel/index.php/Kohlendioxid-Konzentration (Cited March 15, 2021) | es_ES |
dc.description.references | Kraus, H. (2004). Die Atmosphäre der Erde - Eine Einführung in die Meteorologie [The Earth's Atmosphere - An Introduction to Meteorology] (3rd ed.). Berlin Heidelberg, Germany: Springer-Verlag. | es_ES |
dc.description.references | Armstrong P. et al. (2021). Atmospharische Fenster [Atmospheric windows]. Spektrum Akademischer Verlag. Brunotte E., Gebhardt H., Meurer M., Meusburger P., Nipper J. (eds.) https://www.spektrum.de/lexikon/geographie/atmosphaerische-fenster/547 (accessed March 15, 2021). | es_ES |
dc.description.references | Spiegel Wissenschaft. (2017). Klima - CO2-Konzentration steigt so schnell wie nie [Climate - CO2 concentration rising faster than ever before]. Retrieved from https://www.spiegel.de/wissenschaft/mensch/co2-konzentration-steigt-so-schnell-wie-nie-a-1175568.html (Cited March 15, 2021) | es_ES |
dc.description.references | Zech, F. (1998). Grundkurs Mathematikdidaktik - Theoretische und praktische Anleitungen für das Lehren und Lernen von Mathematik [Basic course in mathematics didactics - Theoretical and practical guidance for teaching and learning mathematics] (9th ed.). Weinheim, Germany: Beltz. | es_ES |
dc.description.references | Stender, P. (2016). Wirkungsvolle Lehrerinterventionsformen bei komplexen Modellierungsaufgaben [Effective teacher interventions for complex modeling tasks] (G. Kaiser, Ed.). Wiesbaden, Germany: Springer Spektrum. https://doi.org/10.1007/978-3-658-14297-1 | es_ES |
dc.description.references | Schönbrodt, S., Wohak, K., & Frank, M. (2021). Digital tools to enable collaborative mathematical modeling online. Modelling in Science Education and Learning (MSEL) (in this issue). https://doi.org/10.14218/JERP.2020.00039 | es_ES |