- -

Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing

Mostrar el registro completo del ítem

Cortés, J.; López-Navarro, E.; Romero, J.; Roselló, M. (2021). Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing. European Physical Journal Plus. 136(7):1-23. https://doi.org/10.1140/epjp/s13360-021-01672-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180468

Ficheros en el ítem

Metadatos del ítem

Título: Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing
Autor: Cortés, J.-C. López-Navarro, Elena Romero, José-Vicente Roselló, María-Dolores
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study a class of single-degree-of-freedom oscillators whose restoring function is affected by small nonlinearities and excited by stationary Gaussian stochastic processes. We obtain, via the stochastic perturbation ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
European Physical Journal Plus. (eissn: 2190-5444 )
DOI: 10.1140/epjp/s13360-021-01672-w
Editorial:
Springer
Versión del editor: https://doi.org/10.1140/epjp/s13360-021-01672-w
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/
Agradecimientos:
This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant PID2020-115270GB-I00. ...[+]
Tipo: Artículo

References

W.L. Oberkampf, S.M. De Land, B.M. Rutherford, K.V. Diegert, K.F. Alvin, Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75, 333–357 (2002)

T. Soong, Random Differential Equations in Science and Engineering, vol. 103 (Academic Press, New York, 1973)

Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations, Ser. Stochastic Modelling and Applied Probability, vol. 23. Springer, Berlin Heidelberg (1992) [+]
W.L. Oberkampf, S.M. De Land, B.M. Rutherford, K.V. Diegert, K.F. Alvin, Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75, 333–357 (2002)

T. Soong, Random Differential Equations in Science and Engineering, vol. 103 (Academic Press, New York, 1973)

Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations, Ser. Stochastic Modelling and Applied Probability, vol. 23. Springer, Berlin Heidelberg (1992)

J.L. Bogdanoff, J.E. Goldberg, M. Bernard, Response of a simple structure to a random earthquake-type disturbance. Bull. Seismol. Soc. Am. 51, 293–310 (1961)

L. Su, G. Ahmadi, Earthquake response of linear continuous structures by the method of evolutionary spectra. Eng. Struct. 10, 47–56 (1988)

X. Jin, Y. Tian, Y. Wang, Z. Huang, Explicit expression of stationary response probability density for nonlinear stochastic systems. Acta Mech. 232, 2101–2114 (2021)

D. Lobo, T. Ritto, D. Castello, E. Cataldo, Dynamics of a Duffing oscillator with the stiffness modeled as a stochastic process. Int. J. Non-Linear Mech. 116, 273–280 (2019)

Y. Lin, G. Cai, Probabilistic Structural Dynamics: Advanced Theory and Applications (McGraw-Hill, Cambridge, 1995)

C. To, Nonlinear Random Vibration: Analytical Techniques and Applications (Swets & Zeitlinger, New York, 2000)

M. Kaminski, The Stochastic Perturbation Method for Computational Mechanics (Wiley, New York, 2013)

J.J. Stoker, Nonlinear Vibrations (Wiley (Interscience), New York, 1950)

N. McLachlan, Laplace Transforms and Their Applications to Differential Equations, vol. 103 (Dover Publ. INc., New York, 2014)

R.F. Steidel, An Introduction to Mechanical Vibrations (Wiley, New York, 1989)

G. Casella, R. Berger, Statistical Inference (Cengage Learning, New Delhi, 2007)

H.V. Storch, F.W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, Cambridge, 2001)

J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of Differential Entropy (CRC Press, Boca Raton, 2018)

H. Banks, H. Shuhua, W. Clayton Thompson, Modelling and Inverse Problems in the Presence of Uncertainty (Ser. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, 2001)

Garg, V.K., Wang, Y.-C.: 1 - signal types, properties, and processes. In: Chen, W.-K. (ed.) The Electrical Engineering Handbook

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem