- -

Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author López-Navarro, Elena es_ES
dc.contributor.author Romero, José-Vicente es_ES
dc.contributor.author Roselló, María-Dolores es_ES
dc.date.accessioned 2022-02-03T19:04:37Z
dc.date.available 2022-02-03T19:04:37Z
dc.date.issued 2021-07-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180468
dc.description.abstract [EN] We study a class of single-degree-of-freedom oscillators whose restoring function is affected by small nonlinearities and excited by stationary Gaussian stochastic processes. We obtain, via the stochastic perturbation technique, approximations of the main statistics of the steady state, which is a random variable, including the first moments, and the correlation and power spectral functions. Additionally, we combine this key information with the principle of maximum entropy to construct approximations of the probability density function of the steady state. We include two numerical examples where the advantages and limitations of the stochastic perturbation method are discussed with regard to certain general properties that must be preserved es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant PID2020-115270GB-I00. The authors express their deepest thanks and respect to the reviewers for their valuable comments es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof European Physical Journal Plus es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epjp/s13360-021-01672-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cortés, J.; López-Navarro, E.; Romero, J.; Roselló, M. (2021). Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: Theory and computing. European Physical Journal Plus. 136(7):1-23. https://doi.org/10.1140/epjp/s13360-021-01672-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1140/epjp/s13360-021-01672-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 136 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2190-5444 es_ES
dc.relation.pasarela S\439885 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references W.L. Oberkampf, S.M. De Land, B.M. Rutherford, K.V. Diegert, K.F. Alvin, Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75, 333–357 (2002) es_ES
dc.description.references T. Soong, Random Differential Equations in Science and Engineering, vol. 103 (Academic Press, New York, 1973) es_ES
dc.description.references Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations, Ser. Stochastic Modelling and Applied Probability, vol. 23. Springer, Berlin Heidelberg (1992) es_ES
dc.description.references J.L. Bogdanoff, J.E. Goldberg, M. Bernard, Response of a simple structure to a random earthquake-type disturbance. Bull. Seismol. Soc. Am. 51, 293–310 (1961) es_ES
dc.description.references L. Su, G. Ahmadi, Earthquake response of linear continuous structures by the method of evolutionary spectra. Eng. Struct. 10, 47–56 (1988) es_ES
dc.description.references X. Jin, Y. Tian, Y. Wang, Z. Huang, Explicit expression of stationary response probability density for nonlinear stochastic systems. Acta Mech. 232, 2101–2114 (2021) es_ES
dc.description.references D. Lobo, T. Ritto, D. Castello, E. Cataldo, Dynamics of a Duffing oscillator with the stiffness modeled as a stochastic process. Int. J. Non-Linear Mech. 116, 273–280 (2019) es_ES
dc.description.references Y. Lin, G. Cai, Probabilistic Structural Dynamics: Advanced Theory and Applications (McGraw-Hill, Cambridge, 1995) es_ES
dc.description.references C. To, Nonlinear Random Vibration: Analytical Techniques and Applications (Swets & Zeitlinger, New York, 2000) es_ES
dc.description.references M. Kaminski, The Stochastic Perturbation Method for Computational Mechanics (Wiley, New York, 2013) es_ES
dc.description.references J.J. Stoker, Nonlinear Vibrations (Wiley (Interscience), New York, 1950) es_ES
dc.description.references N. McLachlan, Laplace Transforms and Their Applications to Differential Equations, vol. 103 (Dover Publ. INc., New York, 2014) es_ES
dc.description.references R.F. Steidel, An Introduction to Mechanical Vibrations (Wiley, New York, 1989) es_ES
dc.description.references G. Casella, R. Berger, Statistical Inference (Cengage Learning, New Delhi, 2007) es_ES
dc.description.references H.V. Storch, F.W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, Cambridge, 2001) es_ES
dc.description.references J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of Differential Entropy (CRC Press, Boca Raton, 2018) es_ES
dc.description.references H. Banks, H. Shuhua, W. Clayton Thompson, Modelling and Inverse Problems in the Presence of Uncertainty (Ser. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, 2001) es_ES
dc.description.references Garg, V.K., Wang, Y.-C.: 1 - signal types, properties, and processes. In: Chen, W.-K. (ed.) The Electrical Engineering Handbook es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem