- -

Water quality sensor placement: a multi-objective and multi-criteria approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water quality sensor placement: a multi-objective and multi-criteria approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Brentan, Bruno es_ES
dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Barros, Daniel es_ES
dc.contributor.author Meirelles, Gustavo es_ES
dc.contributor.author Certa, Antonella es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2022-02-03T19:04:49Z
dc.date.available 2022-02-03T19:04:49Z
dc.date.issued 2021-01-03 es_ES
dc.identifier.issn 0920-4741 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180477
dc.description.abstract [EN] To satisfy their main goal, namely providing quality water to consumers, water distribution networks (WDNs) need to be suitably monitored. Only well designed and reliable monitoring data enables WDN managers to make sound decisions on their systems. In this belief, water utilities worldwide have invested in monitoring and data acquisition systems. However, good monitoring needs optimal sensor placement and presents a multi-objective problem where cost and quality are conflicting objectives (among others). In this paper, we address the solution to this multi-objective problem by integrating quality simulations using EPANET-MSX, with two optimization techniques. First, multi-objective optimization is used to build a Pareto front of non-dominated solutions relating contamination detection time and detection probability with cost. To assist decision makers with the selection of an optimal solution that provides the best trade-off for their utility, a multi-criteria decision-making technique is then used with a twofold objective: 1) to cluster Pareto solutions according to network sensitivity and entropy as evaluation parameters; and 2) to rank the solutions within each cluster to provide deeper insight into the problem when considering the utility perspectives.The clustering process, which considers features related to water utility needs and available information, helps decision makers select reliable and useful solutions from the Pareto front. Thus, while several works on sensor placement stop at multi-objective optimization, this work goes a step further and provides a reduced and simplified Pareto front where optimal solutions are highlighted. The proposed methodology uses the NSGA-II algorithm to solve the optimization problem, and clustering is performed through ELECTRE TRI. The developed methodology is applied to a very well-known benchmarking WDN, for which the usefulness of the approach is shown. The final results, which correspond to four optimal solution clusters, are useful for decision makers during the planning and development of projects on networks of quality sensors. The obtained clusters exhibit distinctive features, opening ways for a final project to prioritize the most convenient solution, with the assurance of implementing a Pareto-optimal solution. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water distribution systems es_ES
dc.subject Water quality sensor placement es_ES
dc.subject Optimization es_ES
dc.subject ELECTRE TRI es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Water quality sensor placement: a multi-objective and multi-criteria approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-020-02720-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Brentan, B.; Carpitella, S.; Barros, D.; Meirelles, G.; Certa, A.; Izquierdo Sebastián, J. (2021). Water quality sensor placement: a multi-objective and multi-criteria approach. Water Resources Management. 35(1):225-241. https://doi.org/10.1007/s11269-020-02720-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11269-020-02720-3 es_ES
dc.description.upvformatpinicio 225 es_ES
dc.description.upvformatpfin 241 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\421494 es_ES
dc.description.references Barak S, Mokfi T (2019) Evaluation and selection of clustering methods using a hybrid group mcdm. Expert Syst Appl 138:112817 es_ES
dc.description.references Berry JW, Fleischer L, Hart WE, Phillips CA, Watson JP (2005) Sensor placement in municipal water networks. J Water Resour Plan Manag 131 (3):237–243 es_ES
dc.description.references Bouyssou D, Marchant T (2015) On the relations between electre tri-b and electre tri-c and on a new variant of electre tri-b. Eur J Oper Res 242(1):201–211 es_ES
dc.description.references Brentan B, Carpitella S, Izquierdo J, Luvizotto E Jr, Meirelles G (2019) A multi-objective and multi-criteria approach for district metered area design: water operation and quality analysis. In: International conference on mathematical modeling in engineering & human behaviour, vol 2019, pp 110–117 es_ES
dc.description.references Brito AJ, de Almeida AT, Mota CM (2010) A multicriteria model for risk sorting of natural gas pipelines based on electre tri integrating utility theory. Eur J Oper Res 200(3):812–821 es_ES
dc.description.references Broad DR, Maier HR, Dandy GC, Nixon JB (2008) Optimal design of water distribution systems including water quality and system uncertainty. In: Water distribution systems analysis symposium, vol 2006, pp 1–17 es_ES
dc.description.references Candelieri A, Conti D, Archetti F (2014) A graph based analysis of leak localization in urban water networks. Procedia Eng 70:228–237 es_ES
dc.description.references Carpitella S, Brentan B, Montalvo I, Izquierdo J, Certa A (2018a) Multi-objective and multi-criteria analysis for optimal pump scheduling in water systems. EPiC Series Eng 3:364–371 es_ES
dc.description.references Carpitella S, Certa A, Izquierdo J, La Fata CM (2018b) k-out-of-n systems: an exact formula for the stationary availability and multi-objective configuration design based on mathematical programming and topsis. J Comput Appl Math 330:1007–1015 es_ES
dc.description.references Carpitella S, Ocaña-Levario SJ, Benítez J, Certa A, Izquierdo J (2018c) A hybrid multi-criteria approach to gpr image mining applied to water supply system maintenance. J Appl Geophy 159:754–764 es_ES
dc.description.references Certa A, Enea M, Galante GM, La Fata CM (2017) Electre tri-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Comput Indust Eng 108:100–110 es_ES
dc.description.references Cheung P, Piller O, Propato M (2005) Optimal location of water quality sensors in supply systems by multiobjective genetic algorithms. In: Eight international conference on computing and control in the water industry CCWI05, vol 1, p 2 es_ES
dc.description.references Christodoulou SE, Gagatsis A, Xanthos S, Kranioti S, Agathokleous A, Fragiadakis M (2013) Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resour Manag 27 (13):4443–4468 es_ES
dc.description.references Corrente S, Greco S, Słowiński R (2016) Multiple criteria hierarchy process for electre tri methods. Eur J Oper Res 252(1):191–203 es_ES
dc.description.references Costa AS, Govindan K, Figueira JR (2018) Supplier classification in emerging economies using the electre tri-nc method: a case study considering sustainability aspects. J Clean Prod 201:925–947 es_ES
dc.description.references De Schaetzen W, Walters G, Savic D (2000) Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water 2(2):141–152 es_ES
dc.description.references de Winter C, Palleti VR, Worm D, Kooij R (2019) Optimal placement of imperfect water quality sensors in water distribution networks. Comput Chem Eng 121:200–211 es_ES
dc.description.references Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6 (2):182–197 es_ES
dc.description.references Dias LC, Antunes CH, Dantas G, de Castro N, Zamboni L (2018) A multi-criteria approach to sort and rank policies based on delphi qualitative assessments and electre tri: the case of smart grids in brazil. Omega 76:100–111 es_ES
dc.description.references Eliades DG, Kyriakou M, Vrachimis S, Polycarpou MM (2016) Epanet-matlab toolkit: An open-source software for interfacing epanet with matlab. In: Proceedings of the 14th international conference on computing and control for the water industry, CCWI es_ES
dc.description.references Fernandez E, Navarro J (2011) A new approach to multi-criteria sorting based on fuzzy outranking relations: the theseus method. Eur J Oper Res 213 (2):405–413 es_ES
dc.description.references Fernández E, Figueira JR, Navarro J, Roy B (2017) Electre tri-nb: a new multiple criteria ordinal classification method. Eur J Oper Res 263 (1):214–224 es_ES
dc.description.references Figueira JR, Greco S, Roy B, Słowiński R (2010) Electre methods: main features and recent developments. In: Handbook of multicriteria analysis. Springer, New York, pp 51–89 es_ES
dc.description.references Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of electre methods and their recent extensions. J Multi-Criteria Dec Anal 20 (1-2):61–85 es_ES
dc.description.references Francés-Chust J, Brentan BM, Carpitella S, Izquierdo J, Montalvo I (2020) Optimal placement of pressure sensors using fuzzy dematel-based sensor influence. Water 12(2):493 es_ES
dc.description.references Gandy M (2004) Rethinking urban metabolism: water, space and the modern city. City 8(3):363–379 es_ES
dc.description.references Giudicianni C, Herrera M, Di Nardo A, Greco R, Creaco E, Scala A (2020) Topological placement of quality sensors in water-distribution networks without the recourse to hydraulic modeling. J Water Resour Plan Manag 146 (6):04020030 es_ES
dc.description.references Hart WE, Murray R (2010) Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. J Water Resour Plan Manag 136(6):611–619 es_ES
dc.description.references Herrera M, Abraham E, Stoianov I (2016) A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour Manag 30(5):1685–1699 es_ES
dc.description.references Huang JJ, McBean EA, James W (2008) Multi-objective optimization for monitoring sensor placement in water distribution systems. In: Water distribution systems analysis symposium, vol 2006, pp 1–14 es_ES
dc.description.references Kapelan ZS, Savic DA, Walters GA (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481–492 es_ES
dc.description.references Lee JH (2013) Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy 15(9):3419–3434 es_ES
dc.description.references Liu Z, Ming X (2019) A methodological framework with rough-entropy-electre tri to classify failure modes for co-implementation of smart pss. Adv Eng Inform 42:100968 es_ES
dc.description.references Marchi A, Salomons E, Ostfeld A, Kapelan Z, Simpson AR, Zecchin AC, Maier HR, Wu ZY, Elsayed SM, Song Y et al (2013) Battle of the water networks ii. J Water Resour Plan Manag 140(7):04014009 es_ES
dc.description.references Mohammed A, Harris I, Soroka A, Nujoom R (2019) A hybrid mcdm-fuzzy multi-objective programming approach for a g-resilient supply chain network design. Comput Indust Eng 127:297–312 es_ES
dc.description.references Montalvo I, Izquierdo J, Pérez-garcía R, Herrera M (2014) Water distribution system computer-aided design by agent swarm optimization. Comput-Aided Civ Inf Eng 29(6):433–448 es_ES
dc.description.references Mousseau V, Slowinski R, Zielniewicz P (2000) A user-oriented implementation of the electre-tri method integrating preference elicitation support. Comput Opera Res 27(7-8):757–777 es_ES
dc.description.references Nafi A, Crastes E, Sadiq R, Gilbert D, Piller O (2018) Intentional contamination of water distribution networks: developing indicators for sensitivity and vulnerability assessments. Stoch Environ Res Risk Assess 32(2):527–544 es_ES
dc.description.references Neto JGD, Machado MAS, Gomes LFAM, Caldeira AM, Sallum FSV (2017) Investments in a new technological infrastructure: Decision making using the electre-tri methodology. Procedia Comput Sci 122:194–199 es_ES
dc.description.references Ohar Z, Lahav O, Ostfeld A (2015) Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Water Res 73:193–203 es_ES
dc.description.references Oliker N, Ostfeld A (2015) Network hydraulics inclusion in water quality event detection using multiple sensor stations data. Water Res 80:47–58 es_ES
dc.description.references Ostfeld A, Salomons E (2005) Optimal early warning monitoring system layout for water networks security: Inclusion of sensors sensitivities and response delays. Civ Eng Environ Syst 22(3):151–169 es_ES
dc.description.references Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson JP, Dorini G, Jonkergouw P, Kapelan Z et al (2008) The battle of the water sensor networks (bwsn): A design challenge for engineers and algorithms. J Water Resour Plan Manag 134(6):556–568 es_ES
dc.description.references Quiñones-Grueiro M, Verde C, Llanes-santiago O (2019) Multi-objective sensor placement for leakage detection and localization in water distribution networks. In: 2019 4th conference on control and fault tolerant systems (SysTol), IEEE, pp 129–134 es_ES
dc.description.references Ramezanian R (2019) Estimation of the profiles in posteriori electre tri: A mathematical programming model. Comput Indust Eng 128:47–59 es_ES
dc.description.references Rathi S, Gupta R, Kamble S, Sargaonkar A (2016) Risk based analysis for contamination event selection and optimal sensor placement for intermittent water distribution network security. Water Resour Manag 30(8):2671–2685 es_ES
dc.description.references Reginaldo F (2015) Portfolio management in Brazil and a proposal for evaluation and balancing of portfolio projects with electre tri and iris. Procedia Comput Sci 55:1265–1274 es_ES
dc.description.references Roy B (1968) Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle 2(8):57–75 es_ES
dc.description.references Roy B (1990) The outranking approach and the foundations of electre methods. In: Readings in multiple criteria decision aid. Springer, New York, pp 155–183 es_ES
dc.description.references Sánchez-Lozano J, García-cascales M, Lamata M (2016) Comparative topsis-electre tri methods for optimal sites for photovoltaic solar farms. case study in spain. J Clean Prod 127:387–398 es_ES
dc.description.references Seiti H, Hafezalkotob A, Najafi SE, Khalaj M (2019) Developing a novel risk-based mcdm approach based on d numbers and fuzzy information axiom and its applications in preventive maintenance planning. Appl Soft Comput: 105559 es_ES
dc.description.references Shang F, Uber JG, Rossman LA et al (2008) Epanet multi-species extension user’s manual. risk reduction engineering laboratory us environmental protection agency. Cincinnati, Ohio es_ES
dc.description.references Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423 es_ES
dc.description.references Štirbanović Z, Stanujkić D, Miljanović I, Milanović D (2019) Application of mcdm methods for flotation machine selection. Miner Eng 137:140–146 es_ES
dc.description.references Wang H, Jiang Z, Zhang H, Wang Y, Yang Y, Li Y (2019) An integrated mcdm approach considering demands-matching for reverse logistics. J Clean Prod 208:199–210 es_ES
dc.description.references Wéber R, Hős C (2020) Efficient technique for pipe roughness calibration and sensor placement for water distribution systems. J. Water Resour Plan Manag 146(1):04019070 es_ES
dc.description.references Weickgenannt M, Kapelan Z, Blokker M, Savic DA (2010) Risk-based sensor placement for contaminant detection in water distribution systems. J Water Resour Plan Manag 136(6):629–636 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem