- -

Modelling Biological Systems: A New Algorithm for the Inference of Boolean Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling Biological Systems: A New Algorithm for the Inference of Boolean Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio-Chavarría, Mario es_ES
dc.contributor.author Santamaria Navarro, Cristina es_ES
dc.contributor.author García Mora, María Belén es_ES
dc.contributor.author Rubio Navarro, Gregorio es_ES
dc.date.accessioned 2022-02-04T19:03:44Z
dc.date.available 2022-02-04T19:03:44Z
dc.date.issued 2021-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180504
dc.description.abstract [EN] Biological systems are commonly constituted by a high number of interacting agents. This great dimensionality hinders biological modelling due to the high computational cost. Therefore, new modelling methods are needed to reduce computation time while preserving the properties of the depicted systems. At this point, Boolean Networks have been revealed as a modelling tool with high expressiveness and reduced computing times. The aim of this work has been to introduce an automatic and coherent procedure to model systems through Boolean Networks. A synergy that harnesses the strengths of both approaches is obtained by combining an existing approach to managing information from biological pathways with the so-called Nested Canalising Boolean Functions (NCBF). In order to show the power of the developed method, two examples of an application with systems studied in the bibliography are provided: The epithelial-mesenchymal transition and the lac operon. Due to the fact that this method relies on directed graphs as a primary representation of the systems, its applications exceed life sciences into areas such as traffic management or machine learning, in which these graphs are the main expression of the systems handled. es_ES
dc.description.sponsorship This paper has been supported by the Generalitat Valenciana grant AICO/2020/114 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Boolean networks es_ES
dc.subject Canalisation es_ES
dc.subject EMT-transition es_ES
dc.subject Lac operon es_ES
dc.subject Molecular biology es_ES
dc.subject Nested canalised boolean functions es_ES
dc.subject Pathway conflict strategy es_ES
dc.subject Stability system es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Modelling Biological Systems: A New Algorithm for the Inference of Boolean Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math9040373 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F114//MODELIZACION MATEMATICO-COMPUTACIONAL DEL CARCINOMA VESICAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Rubio-Chavarría, M.; Santamaria Navarro, C.; García Mora, MB.; Rubio Navarro, G. (2021). Modelling Biological Systems: A New Algorithm for the Inference of Boolean Networks. Mathematics. 9(4):1-22. https://doi.org/10.3390/math9040373 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math9040373 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\431318 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
upv.costeAPC 1000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem