- -

Extension of the modal superposition method for general damping applied in railway dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extension of the modal superposition method for general damping applied in railway dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner Navarro, Juan es_ES
dc.contributor.author Andrés-Ruiz, Víctor Tomás es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Denia Guzmán, Francisco David es_ES
dc.date.accessioned 2022-02-07T08:29:18Z
dc.date.available 2022-02-07T08:29:18Z
dc.date.issued 2019-07-12 es_ES
dc.identifier.isbn 978-84-09-16428-8 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180563
dc.description.abstract [EN] The frequency response function (FRF) permits to characterise in the frequency domain the systems governed by linear dynamics by means of a relationship between an excitation applied at one degree of freedom (dof) and the consequent output response in a particular dof. A modal approach is widely extended in the engineering fields as efficient method of computing the FRF of matrix second-order linear equations of motion derived from the application of the Finite Element Method (FEM) [1]. This approach is based on the truncation of the number of vibration modes that conform the base of the new modal coordinates. The criterion for the truncation is linked to the frequency range of the dynamic study, ordering the vibration modes with respect to the eigenvalues (the square of natural frequencies) associated. The natural frequency associated with the last vibration mode selected establishes the maximum frequency that can describe the time response of the system. The truncation permits to reduce the dimension of the system from N number of dofs in physical coordinates to m truncated vibration modes in modal coordinates. The fundamental numerical problem derived from the truncation is the resulting non-square vibration modes matrix, used as transformation matrix in the physical to modal change of variable [1,2]. This change should allow the diagonalisation of the matrices involved in the equation of motion: mass, stiffness and damping matrices. The diagonalisation is essential to decouple the system in m second-order linear differential equations that can be solved analytically in the time domain. Nevertheless, the inverse of vibration modes matrix required for the diagonalisation cannot be applied from its non-square nature and it can only be replaced by the transpose matrix if both mass and stiffness matrices are symmetric. The complexity increases in a case of general damping instead of proportional or spectral ones [3], in which the damping matrix must be included in the eigenproblem in order to diagonalise the whole modal system. This work proposes a methodology to overcome the issues abovementioned and applies this in the field of railway dynamics in order to compute the modal properties of a railway wheel modelled by using FEM [4]. The paper includes a study of the numerical performance of this method and its comparison with other numerical procedures to find the FRF of the wheel. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support of FEDER/Ministerio de Ciencia, Innovacion y Universidades Agencia Estatal de Investigacion (project TRA2017-84701-R), as well as Conselleria d¿Educacio, Investigacio, Cultura i Esport (project Prometeo/2016/007) and European Commission through the project RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles (Horizon 2020 Shift2Rail JU call 2017, grant number 777564). es_ES
dc.language Inglés es_ES
dc.publisher R. Company, J. C. Cortés, L. Jódar and E. López-Navarro es_ES
dc.relation.ispartof Modelling for Engineering & Human Behaviour 2019 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Extension of the modal superposition method for general damping applied in railway dynamics es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007//Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777564/EU/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Giner Navarro, J.; Andrés-Ruiz, VT.; Martínez Casas, J.; Denia Guzmán, FD. (2019). Extension of the modal superposition method for general damping applied in railway dynamics. R. Company, J. C. Cortés, L. Jódar and E. López-Navarro. 94-98. http://hdl.handle.net/10251/180563 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Mathematical Modelling in Engineering & Human Behaviour 2019 es_ES
dc.relation.conferencedate Julio 10-12,2019 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion https://imm.webs.upv.es/jornadas/2021/past_editions.html es_ES
dc.description.upvformatpinicio 94 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\391643 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder SHIFT2RAIL JOINT UNDERTAKING es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem