- -

Rediscovering scientific management. The evolution from industrial engineering to industrial data science

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rediscovering scientific management. The evolution from industrial engineering to industrial data science

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Deuse, Jochen es_ES
dc.contributor.author West, Nikolai es_ES
dc.contributor.author Syberg, Marius es_ES
dc.date.accessioned 2022-02-07T09:40:35Z
dc.date.available 2022-02-07T09:40:35Z
dc.date.issued 2022-01-31
dc.identifier.uri http://hdl.handle.net/10251/180582
dc.description.abstract [EN] Industrial Engineering, through its role as design, planning and organizational body of the industrial production, has been crucial for the success of manufacturing companies for decades. The potential, expected over the course of Industry 4.0 and through the application of Data Analytic tools and methods, requires a coupling to established methods. This creates the necessity to extend the traditional job description of Industrial Engineering by new tools from the field of Data Analytics, namely Industrial Data Science. Originating from the historic pioneers of Industrial Engineering, it is evident that the basic principles will remain valuable. However, further development in view of the data analytic possibilities is already taking place. This paper reviews the origins of Industrial Engineering with reference to four pioneers, draws a connection to current day usage, and considers possibilities for future applications of Industrial Data Science. es_ES
dc.description.sponsorship German Federal Ministry of Education and Research (BMBF), program ‘Industry 4.0 - Collaborations in Dynamic Value Networks (InKoWe)’ in the project AKKORD (02P17D210) es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Scientific Management es_ES
dc.subject Industrial Engineering es_ES
dc.subject Industrial Data Science es_ES
dc.subject Data Science es_ES
dc.subject Data Analytics es_ES
dc.subject Process Chain es_ES
dc.title Rediscovering scientific management. The evolution from industrial engineering to industrial data science es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2022.16617
dc.relation.projectID info:eu-repo/grantAgreement/BMBF/AKKORD/02P17D210/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Deuse, J.; West, N.; Syberg, M. (2022). Rediscovering scientific management. The evolution from industrial engineering to industrial data science. International Journal of Production Management and Engineering. 10(1):1-12. https://doi.org/10.4995/ijpme.2022.16617 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2022.16617 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\16617 es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.description.references Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, Concepts, and Applications for Engi-neers and System Designers. Apress Media. https://doi.org/10.1007/978-1-4302-5990-9 es_ES
dc.description.references Bohnen, F., Buhl, M., & Deuse, J. (2013). Systematic procedure for leveling of low volume and high mix pro-duction. CIRP Journal of Manufacturing Science and Technology, 6(1), 53-58. https://doi.org/10.1016/j.cirpj.2012.10.003 es_ES
dc.description.references Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2020). Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Computers & Industrial Engineering, 139(1-4). https://doi.org/10.1016/j.cie.2018.10.046 es_ES
dc.description.references Burbidge, J. L. (1963). Production flow analysis. Production Engineer, 42(12), 742. https://doi.org/10.1049/tpe.1963.0114 es_ES
dc.description.references Burbidge, J. L. (1975). The Introduction of Group Technology. W. H. es_ES
dc.description.references Burbidge, J. L. (1991). Production flow analysis for planning group technology. Journal of Operations Manage-ment, 10(1), 5-27. https://doi.org/10.1016/0272-6963(91)90033-T es_ES
dc.description.references Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0. SPSS Inc. es_ES
dc.description.references Corallo, A., Lazoi, M., & Striani, F. (2020). Process mining and industrial applications: A systematic literature review. Knowledge and Process Management, 27(3), 225-233. https://doi.org/10.1002/kpm.1630 es_ES
dc.description.references Deming, W. E. (1950). Elementary Principles of the Statistical Control of Quality: A Series of Lectures. Nippon Kagaku Gijutsu Remmei. es_ES
dc.description.references Deuse, J., Dombrowski, U., Nöhring, F., Mazarov, J., & Dix, Y. (2020). Systematic combination of Lean Man-agement with digitalization to improve production systems on the example of Jidoka 4.0. International Journal of Engineering Business Management, 12(3), 184797902095135. https://doi.org/10.1177/1847979020951351 es_ES
dc.description.references Deuse, J., Lenze, D., Klenner, F., & Friedrich, T. (2016). Manufacturing data analytics to identify dynamic bot-tlenecks in production systems with high value-added variability (in German). In C. Schlick (Ed.), Me-gatrend Digitalisierung (pp. 11-26). GITO. es_ES
dc.description.references Deuse, J., Stankiewicz, L., Zwinkau, R., & Weichert, F. (2019). Automatic Generation of Methods-Time Meas-urement Analyses for Assembly Tasks from Motion Capture Data Using Convolutional Neuronal Net-works. International Conference on Applied Human Factors and Ergonomics, 141-150. https://doi.org/10.1007/978-3-030-20040-4_13 es_ES
dc.description.references Deuse, J., Wischniewski, S., & Fischer, H. (2006). Rediscovering Industrial Engineering - Methods for applying lean production principles (deutsch: Renaissance des Industrial Engineering - Methoden für die Um-setzung Ganzheitlicher Produktionssysteme.). Werkstattstechnik Online, 96(1/2), 57-60. es_ES
dc.description.references Dold, L., & Speck, C. (2021). Resolving the productivity paradox of digitalised production. International Jour-nal of Production Management and Engineering, 9(2), 65. https://doi.org/10.4995/ijpme.2021.15058 es_ES
dc.description.references Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2020). Antecedents, consequences, and challenges of small and medium-sized enterprise digitalization. Journal of Business Research, 112, 119-127. https://doi.org/10.1016/j.jbusres.2020.03.004 es_ES
dc.description.references ER, M., Arsad, N., Astuti, H. M., Kusumawardani, R. P., & Utami, R. A. (2018). Analysis of production planning in a global manufacturing company with process mining. Journal of Enterprise Information Manage-ment, 31(2), 317-337. https://doi.org/10.1108/JEIM-01-2017-0003 es_ES
dc.description.references Eversheim, W., & Deuse, J. (1997). Formation of Part Families based on Product Model Data. Production Engi-neering (2), 97-100. es_ES
dc.description.references Fayyad, U., Piatetsky-Shapiro, & Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying Framework. International Conference on Knowledge Discovery and Data Mining, 2(1), 82-88. es_ES
dc.description.references Feng, Z., & Hua, X. (2020). Pattern Recognition and Its Application in Image Processing. Journal of Physics: Conference Series, 1518, 12071. https://doi.org/10.1088/1742-6596/1518/1/012071 es_ES
dc.description.references Gallina, V., Lingitz, L., Breitschopf, J., Zudor, E., & Sihn, W. (2021). Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network. Procedia Manufacturing, 54, 136-141. https://doi.org/10.1016/j.promfg.2021.07.047 es_ES
dc.description.references Gilbreth, F. B. (1912). Primer of scientific management. D. Van Nostrand C. es_ES
dc.description.references Goldratt, E. M., & Cox, J. (1984). The Goal. North River Press. es_ES
dc.description.references Goldratt, E. M., & Fox, R. E. (1986). The Race. North River Press. es_ES
dc.description.references Gorobets, V., Holzwarth, V., Hirt, C., Jufer, N., & Kunz, A. (2021). A VR-based approach in conducting MTM for manual workplaces. The International Journal of Advanced Manufacturing Technology, 117(7), 2501-2510. https://doi.org/10.1007/s00170-021-07260-7 es_ES
dc.description.references Huang, Z., Kim, J., Sadri, A., Dowey, S., & Dargusch, M. S. (2019). Industry 4.0: Development of a multi-agent system for dynamic value stream mapping in SMEs. Journal of Manufacturing Systems, 52, 1-12. https://doi.org/10.1016/j.jmsy.2019.05.001 es_ES
dc.description.references IISE. (2021). What is industrial and systems engineering? (IISE official definition). Institute of Industrial & Sys-tems Engineers. iise.org/details.aspx?id=282 es_ES
dc.description.references Johnson, S. B. (1997). Three Approaches to Big Technology: Operations Research, Systems Engineering, and Project Management. Technology and Culture, 38(4), 891. https://doi.org/10.2307/3106953 es_ES
dc.description.references Johnson, S. B. (2013). Technical and institutional factors in the emergence of project management. International Journal of Project Management, 31(5), 670-681. https://doi.org/10.1016/j.ijproman.2013.01.006 es_ES
dc.description.references Kingman, J. F. C. (1961). The single server queue in heavy traffic. Mathematical Proceedings of the Cambridge Philosophical Society, 57(4), 902-904. https://doi.org/10.1017/S0305004100036094 es_ES
dc.description.references Knoll, D., Waldmann, J., & Reinhart, G. (2019). Developing an internal logistics ontology for process mining. Procedia CIRP, 79(1), 427-432. https://doi.org/10.1016/j.procir.2019.02.116 es_ES
dc.description.references Kusiak, A., & Dagli, C. H. (1994). Artificial Neural Networks for Intelligent Manufacturing. Springer Netherlands. es_ES
dc.description.references Lee, E. (2006). Cyber-Physical Systems - Are Computing Foundations Adequate? es_ES
dc.description.references Lieber, D., Stolpe, M., Konrad, B., Deuse, J., & Morik, K. (2013). Quality Prediction in Interlinked Manufactur-ing Processes based on Supervised & Unsupervised Machine Learning. CIRP Conference on Manufac-turing Systems, 46, 193-198. https://doi.org/10.1016/j.procir.2013.05.033 es_ES
dc.description.references Little, J. D. C. (1961). A Proof for the Queuing Formula: L = λ W. Operations Research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383 es_ES
dc.description.references Lödding, H. (2013). Handbook of Manufacturing Control: Fundamentals, description, configuration. Springer-Link Bücher. Springer. https://doi.org/10.1007/978-3-642-24458-2 es_ES
dc.description.references Maschek, T., Heuser, C., Hasselmann, V.-R., Deuse, J., & Willats, P. (2014). Variability-based classification of production systems.: Basis for individual design and management concepts. Zeitschrift Für Wirtschaft-lichen Fabrikbetrieb, 109(9), 591-594 ((in German)). https://doi.org/10.3139/104.111204 es_ES
dc.description.references Maury, M. F. (1963). The Physical Geography of the Sea, and Its Meteorology. Harvard University Press. http://dx.doi.org/10.4159/harvard.9780674865280 https://doi.org/10.4159/harvard.9780674865280 es_ES
dc.description.references Maynard, H. B., & Zandin, K. B. (2001). Maynard's industrial engineering handbook (5th ed.). McGraw-Hill. es_ES
dc.description.references Mazarov, J., Wolf, P., Schallow, J., Nöhring, F., Deuse, J., & Richter, R. (2019). Industrial Data Science in Value Creation Networks (in German). Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, 114(12), 874-877 (Concept of a Service Platform for Data Integration and Analysis, Competence Development and Novel Business Models). https://doi.org/10.3139/104.112205 es_ES
dc.description.references Merkle, J. A. (1980). Management and Ideology: The Legacy of the International Scientific Management Move-ment. UC Press. es_ES
dc.description.references Mitrofanov, S. P. (1946). Scientific Principles of Group Technology. es_ES
dc.description.references MTM ASSOCIATION e. V. (2021). Brand History. MTM ASSOCIATION e. V. mtm.org/en/brands/brand-history es_ES
dc.description.references Richter, R., & Deuse, J. (2011). Industrial Engineering in Modern Production (in German). Zeitschrift F. Angew. Arbeitswissenschaft, 207(1), 6-13. es_ES
dc.description.references Roser, C., Lorentzen, K., Lenze, D., Deuse, J., Klenner, F., Richter, R., Schmitt, J., & Willats, P. (2017). Bottle-neck Prediction Using the Active Period Method in Combination with Buffer Inventories. IFIP-APMS, 374-381. https://doi.org/10.1007/978-3-319-66926-7_43 es_ES
dc.description.references Roser, C., Nakano, M., & Tanaka, M. (2002). Shifting Bottleneck Detection. Proc. Of the Winter Simulation Conference(1), 1079-1086. https://doi.org/10.1109/WSC.2002.1166360 es_ES
dc.description.references Schmitt, J., Bönig, J., Borggräfe, T., Beitinger, G., & Deuse, J. (2020). Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing. Advanced Engineering Informatics, 45, 1-10. https://doi.org/10.1016/j.aei.2020.101101 es_ES
dc.description.references Schmitt, J., Hahn, F., & Deuse, J. (2019). Practical Framework for Advanced Quality-based Process Control in Interlinked Manufacturing Processes. IEEE-IEEM, 511-515. https://doi.org/10.1109/IEEM44572.2019.8978870 es_ES
dc.description.references Schulte, L., Schmitt, J., Meierhofer, F., & Deuse, J. (2020). Optimizing Inspection Process Severity by Machine Learning Under Label Uncertainty. Advances in Human Factors and Systems Interaction, 3-9. https://doi.org/10.1007/978-3-030-51369-6_1 es_ES
dc.description.references Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. Martino Publishing. es_ES
dc.description.references Sokolowski, A. P. (1938). Problems of Typification of Technological Processes. Lenitomasch. es_ES
dc.description.references Strauß, P., Schmitz, M., Wöstmann, R., & Deuse, J. (2018). Enabling of Predictive Maintenance in the Brown-field through Low-Cost Sensors, an IIoT-Architecture and Machine Learning. In 2018 IEEE Interna-tional Conference on Big Data (Big Data). https://doi.org/10.1109/BigData.2018.8622076 es_ES
dc.description.references Taylor, F. W. (1911). The Principles of Scientific Management. Harper & Brothers Publishers. es_ES
dc.description.references Valamede, L. S., & Akkari, A. C. S. (2020). Lean 4.0: A New Holistic Approach for the Integration of Lean Manufacturing Tools and Digital Technologies. International Journal of Mathematical, Engineering and Management Sciences, 5(5), 851-868. https://doi.org/10.33889/IJMEMS.2020.5.5.066 es_ES
dc.description.references van der Aalst, W., Adriansyah, A., de Medeiros, Ana Karla Alves, Arcieri, F., Baier, T., Blickle, T., Bose, J. C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., Leoni, M. de, . . . Wynn, M. (2012). Process Mining Mani-festo. In F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business Process Management Workshops (pp. 169-194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28108-2_19 es_ES
dc.description.references Wang, K.-S. (2013). Towards zero-defect manufacturing (ZDM)-a data mining approach. Advances in Manu-facturing, 1(1), 62-74. https://doi.org/10.1007/s40436-013-0010-9 es_ES
dc.description.references Wang, L., Zhao, G., Cheng, L., & Pietikäinen, M. (2011). Machine Learning for Vision-Based Motion Analysis. Springer London. https://doi.org/10.1007/978-0-85729-057-1 es_ES
dc.description.references Wang, T., Wang, X., Ma, R., Li, X., Hu, X., Chan, F. T. S., & Ruan, J. (2020). Random Forest-Bayesian Optimi-zation for Product Quality Prediction With Large-Scale Dimensions in Process Industrial Cyber-Physical Systems. IEEE Internet of Things Journal, 7(9), 8641-8653. https://doi.org/10.1109/JIOT.2020.2992811 es_ES
dc.description.references Wedel, M., Hacht, M., Hieber, R., Metternich, J., & Abele, E. (2015). Real-time Bottleneck Detection and Predic-tion to Prioritize Fault Repair in Interlinked Production Lines. Procedia CIRP, 37, 140-145. https://doi.org/10.1016/j.procir.2015.08.071 es_ES
dc.description.references West, N., Schlegl, T., & Deuse, J. (2021). Feature extraction for time series classification using univariate de-scriptive statistics and dynamic time warping in a manufacturing environment. IEEE-ICBAIE, 2(1), 762-768. https://doi.org/10.1109/ICBAIE52039.2021.9389954 es_ES
dc.description.references West, N., Syberg, M., & Deuse, J. (2022). A Holistic Methodology for Successive Bottleneck Analysis in Dy-namic Value Streams of Manufacturing Companies. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. S. S. Larsen, K. Nielsen, A. Napoleone, & S. Kjeldgaard (Eds.), Lecture Notes in Mechanical Engineer-ing. Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems (pp. 612-619). Springer International Publishing. https://doi.org/10.1007/978-3-030-90700-6_69 es_ES
dc.description.references Wierse, A., & Riedel, T. (2017). Smart Data Analytics : Mit Hilfe Von Big Data Zusammenhänge Erkennen und Potentiale Nutzen. Walter de Gruyter GmbH. http://ebookcentral.proquest.com/lib/dortmundtech/detail.action?docID=4880126 https://doi.org/10.1515/9783110463958 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem