- -

Rediscovering scientific management. The evolution from industrial engineering to industrial data science

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rediscovering scientific management. The evolution from industrial engineering to industrial data science

Mostrar el registro completo del ítem

Deuse, J.; West, N.; Syberg, M. (2022). Rediscovering scientific management. The evolution from industrial engineering to industrial data science. International Journal of Production Management and Engineering. 10(1):1-12. https://doi.org/10.4995/ijpme.2022.16617

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180582

Ficheros en el ítem

Metadatos del ítem

Título: Rediscovering scientific management. The evolution from industrial engineering to industrial data science
Autor: Deuse, Jochen West, Nikolai Syberg, Marius
Fecha difusión:
Resumen:
[EN] Industrial Engineering, through its role as design, planning and organizational body of the industrial production, has been crucial for the success of manufacturing companies for decades. The potential, expected over ...[+]
Palabras clave: Scientific Management , Industrial Engineering , Industrial Data Science , Data Science , Data Analytics , Process Chain
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Production Management and Engineering. (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2022.16617
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ijpme.2022.16617
Código del Proyecto:
info:eu-repo/grantAgreement/BMBF/AKKORD/02P17D210/
Agradecimientos:
German Federal Ministry of Education and Research (BMBF), program ‘Industry 4.0 - Collaborations in Dynamic Value Networks (InKoWe)’ in the project AKKORD (02P17D210)
Tipo: Artículo

References

Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, Concepts, and Applications for Engi-neers and System Designers. Apress Media. https://doi.org/10.1007/978-1-4302-5990-9

Bohnen, F., Buhl, M., & Deuse, J. (2013). Systematic procedure for leveling of low volume and high mix pro-duction. CIRP Journal of Manufacturing Science and Technology, 6(1), 53-58. https://doi.org/10.1016/j.cirpj.2012.10.003

Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2020). Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Computers & Industrial Engineering, 139(1-4). https://doi.org/10.1016/j.cie.2018.10.046 [+]
Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, Concepts, and Applications for Engi-neers and System Designers. Apress Media. https://doi.org/10.1007/978-1-4302-5990-9

Bohnen, F., Buhl, M., & Deuse, J. (2013). Systematic procedure for leveling of low volume and high mix pro-duction. CIRP Journal of Manufacturing Science and Technology, 6(1), 53-58. https://doi.org/10.1016/j.cirpj.2012.10.003

Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2020). Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Computers & Industrial Engineering, 139(1-4). https://doi.org/10.1016/j.cie.2018.10.046

Burbidge, J. L. (1963). Production flow analysis. Production Engineer, 42(12), 742. https://doi.org/10.1049/tpe.1963.0114

Burbidge, J. L. (1975). The Introduction of Group Technology. W. H.

Burbidge, J. L. (1991). Production flow analysis for planning group technology. Journal of Operations Manage-ment, 10(1), 5-27. https://doi.org/10.1016/0272-6963(91)90033-T

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0. SPSS Inc.

Corallo, A., Lazoi, M., & Striani, F. (2020). Process mining and industrial applications: A systematic literature review. Knowledge and Process Management, 27(3), 225-233. https://doi.org/10.1002/kpm.1630

Deming, W. E. (1950). Elementary Principles of the Statistical Control of Quality: A Series of Lectures. Nippon Kagaku Gijutsu Remmei.

Deuse, J., Dombrowski, U., Nöhring, F., Mazarov, J., & Dix, Y. (2020). Systematic combination of Lean Man-agement with digitalization to improve production systems on the example of Jidoka 4.0. International Journal of Engineering Business Management, 12(3), 184797902095135. https://doi.org/10.1177/1847979020951351

Deuse, J., Lenze, D., Klenner, F., & Friedrich, T. (2016). Manufacturing data analytics to identify dynamic bot-tlenecks in production systems with high value-added variability (in German). In C. Schlick (Ed.), Me-gatrend Digitalisierung (pp. 11-26). GITO.

Deuse, J., Stankiewicz, L., Zwinkau, R., & Weichert, F. (2019). Automatic Generation of Methods-Time Meas-urement Analyses for Assembly Tasks from Motion Capture Data Using Convolutional Neuronal Net-works. International Conference on Applied Human Factors and Ergonomics, 141-150. https://doi.org/10.1007/978-3-030-20040-4_13

Deuse, J., Wischniewski, S., & Fischer, H. (2006). Rediscovering Industrial Engineering - Methods for applying lean production principles (deutsch: Renaissance des Industrial Engineering - Methoden für die Um-setzung Ganzheitlicher Produktionssysteme.). Werkstattstechnik Online, 96(1/2), 57-60.

Dold, L., & Speck, C. (2021). Resolving the productivity paradox of digitalised production. International Jour-nal of Production Management and Engineering, 9(2), 65. https://doi.org/10.4995/ijpme.2021.15058

Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2020). Antecedents, consequences, and challenges of small and medium-sized enterprise digitalization. Journal of Business Research, 112, 119-127. https://doi.org/10.1016/j.jbusres.2020.03.004

ER, M., Arsad, N., Astuti, H. M., Kusumawardani, R. P., & Utami, R. A. (2018). Analysis of production planning in a global manufacturing company with process mining. Journal of Enterprise Information Manage-ment, 31(2), 317-337. https://doi.org/10.1108/JEIM-01-2017-0003

Eversheim, W., & Deuse, J. (1997). Formation of Part Families based on Product Model Data. Production Engi-neering (2), 97-100.

Fayyad, U., Piatetsky-Shapiro, & Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying Framework. International Conference on Knowledge Discovery and Data Mining, 2(1), 82-88.

Feng, Z., & Hua, X. (2020). Pattern Recognition and Its Application in Image Processing. Journal of Physics: Conference Series, 1518, 12071. https://doi.org/10.1088/1742-6596/1518/1/012071

Gallina, V., Lingitz, L., Breitschopf, J., Zudor, E., & Sihn, W. (2021). Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network. Procedia Manufacturing, 54, 136-141. https://doi.org/10.1016/j.promfg.2021.07.047

Gilbreth, F. B. (1912). Primer of scientific management. D. Van Nostrand C.

Goldratt, E. M., & Cox, J. (1984). The Goal. North River Press.

Goldratt, E. M., & Fox, R. E. (1986). The Race. North River Press.

Gorobets, V., Holzwarth, V., Hirt, C., Jufer, N., & Kunz, A. (2021). A VR-based approach in conducting MTM for manual workplaces. The International Journal of Advanced Manufacturing Technology, 117(7), 2501-2510. https://doi.org/10.1007/s00170-021-07260-7

Huang, Z., Kim, J., Sadri, A., Dowey, S., & Dargusch, M. S. (2019). Industry 4.0: Development of a multi-agent system for dynamic value stream mapping in SMEs. Journal of Manufacturing Systems, 52, 1-12. https://doi.org/10.1016/j.jmsy.2019.05.001

IISE. (2021). What is industrial and systems engineering? (IISE official definition). Institute of Industrial & Sys-tems Engineers. iise.org/details.aspx?id=282

Johnson, S. B. (1997). Three Approaches to Big Technology: Operations Research, Systems Engineering, and Project Management. Technology and Culture, 38(4), 891. https://doi.org/10.2307/3106953

Johnson, S. B. (2013). Technical and institutional factors in the emergence of project management. International Journal of Project Management, 31(5), 670-681. https://doi.org/10.1016/j.ijproman.2013.01.006

Kingman, J. F. C. (1961). The single server queue in heavy traffic. Mathematical Proceedings of the Cambridge Philosophical Society, 57(4), 902-904. https://doi.org/10.1017/S0305004100036094

Knoll, D., Waldmann, J., & Reinhart, G. (2019). Developing an internal logistics ontology for process mining. Procedia CIRP, 79(1), 427-432. https://doi.org/10.1016/j.procir.2019.02.116

Kusiak, A., & Dagli, C. H. (1994). Artificial Neural Networks for Intelligent Manufacturing. Springer Netherlands.

Lee, E. (2006). Cyber-Physical Systems - Are Computing Foundations Adequate?

Lieber, D., Stolpe, M., Konrad, B., Deuse, J., & Morik, K. (2013). Quality Prediction in Interlinked Manufactur-ing Processes based on Supervised & Unsupervised Machine Learning. CIRP Conference on Manufac-turing Systems, 46, 193-198. https://doi.org/10.1016/j.procir.2013.05.033

Little, J. D. C. (1961). A Proof for the Queuing Formula: L = λ W. Operations Research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383

Lödding, H. (2013). Handbook of Manufacturing Control: Fundamentals, description, configuration. Springer-Link Bücher. Springer. https://doi.org/10.1007/978-3-642-24458-2

Maschek, T., Heuser, C., Hasselmann, V.-R., Deuse, J., & Willats, P. (2014). Variability-based classification of production systems.: Basis for individual design and management concepts. Zeitschrift Für Wirtschaft-lichen Fabrikbetrieb, 109(9), 591-594 ((in German)). https://doi.org/10.3139/104.111204

Maury, M. F. (1963). The Physical Geography of the Sea, and Its Meteorology. Harvard University Press. http://dx.doi.org/10.4159/harvard.9780674865280 https://doi.org/10.4159/harvard.9780674865280

Maynard, H. B., & Zandin, K. B. (2001). Maynard's industrial engineering handbook (5th ed.). McGraw-Hill.

Mazarov, J., Wolf, P., Schallow, J., Nöhring, F., Deuse, J., & Richter, R. (2019). Industrial Data Science in Value Creation Networks (in German). Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, 114(12), 874-877 (Concept of a Service Platform for Data Integration and Analysis, Competence Development and Novel Business Models). https://doi.org/10.3139/104.112205

Merkle, J. A. (1980). Management and Ideology: The Legacy of the International Scientific Management Move-ment. UC Press.

Mitrofanov, S. P. (1946). Scientific Principles of Group Technology.

MTM ASSOCIATION e. V. (2021). Brand History. MTM ASSOCIATION e. V. mtm.org/en/brands/brand-history

Richter, R., & Deuse, J. (2011). Industrial Engineering in Modern Production (in German). Zeitschrift F. Angew. Arbeitswissenschaft, 207(1), 6-13.

Roser, C., Lorentzen, K., Lenze, D., Deuse, J., Klenner, F., Richter, R., Schmitt, J., & Willats, P. (2017). Bottle-neck Prediction Using the Active Period Method in Combination with Buffer Inventories. IFIP-APMS, 374-381. https://doi.org/10.1007/978-3-319-66926-7_43

Roser, C., Nakano, M., & Tanaka, M. (2002). Shifting Bottleneck Detection. Proc. Of the Winter Simulation Conference(1), 1079-1086. https://doi.org/10.1109/WSC.2002.1166360

Schmitt, J., Bönig, J., Borggräfe, T., Beitinger, G., & Deuse, J. (2020). Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing. Advanced Engineering Informatics, 45, 1-10. https://doi.org/10.1016/j.aei.2020.101101

Schmitt, J., Hahn, F., & Deuse, J. (2019). Practical Framework for Advanced Quality-based Process Control in Interlinked Manufacturing Processes. IEEE-IEEM, 511-515. https://doi.org/10.1109/IEEM44572.2019.8978870

Schulte, L., Schmitt, J., Meierhofer, F., & Deuse, J. (2020). Optimizing Inspection Process Severity by Machine Learning Under Label Uncertainty. Advances in Human Factors and Systems Interaction, 3-9. https://doi.org/10.1007/978-3-030-51369-6_1

Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. Martino Publishing.

Sokolowski, A. P. (1938). Problems of Typification of Technological Processes. Lenitomasch.

Strauß, P., Schmitz, M., Wöstmann, R., & Deuse, J. (2018). Enabling of Predictive Maintenance in the Brown-field through Low-Cost Sensors, an IIoT-Architecture and Machine Learning. In 2018 IEEE Interna-tional Conference on Big Data (Big Data). https://doi.org/10.1109/BigData.2018.8622076

Taylor, F. W. (1911). The Principles of Scientific Management. Harper & Brothers Publishers.

Valamede, L. S., & Akkari, A. C. S. (2020). Lean 4.0: A New Holistic Approach for the Integration of Lean Manufacturing Tools and Digital Technologies. International Journal of Mathematical, Engineering and Management Sciences, 5(5), 851-868. https://doi.org/10.33889/IJMEMS.2020.5.5.066

van der Aalst, W., Adriansyah, A., de Medeiros, Ana Karla Alves, Arcieri, F., Baier, T., Blickle, T., Bose, J. C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., Leoni, M. de, . . . Wynn, M. (2012). Process Mining Mani-festo. In F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business Process Management Workshops (pp. 169-194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28108-2_19

Wang, K.-S. (2013). Towards zero-defect manufacturing (ZDM)-a data mining approach. Advances in Manu-facturing, 1(1), 62-74. https://doi.org/10.1007/s40436-013-0010-9

Wang, L., Zhao, G., Cheng, L., & Pietikäinen, M. (2011). Machine Learning for Vision-Based Motion Analysis. Springer London. https://doi.org/10.1007/978-0-85729-057-1

Wang, T., Wang, X., Ma, R., Li, X., Hu, X., Chan, F. T. S., & Ruan, J. (2020). Random Forest-Bayesian Optimi-zation for Product Quality Prediction With Large-Scale Dimensions in Process Industrial Cyber-Physical Systems. IEEE Internet of Things Journal, 7(9), 8641-8653. https://doi.org/10.1109/JIOT.2020.2992811

Wedel, M., Hacht, M., Hieber, R., Metternich, J., & Abele, E. (2015). Real-time Bottleneck Detection and Predic-tion to Prioritize Fault Repair in Interlinked Production Lines. Procedia CIRP, 37, 140-145. https://doi.org/10.1016/j.procir.2015.08.071

West, N., Schlegl, T., & Deuse, J. (2021). Feature extraction for time series classification using univariate de-scriptive statistics and dynamic time warping in a manufacturing environment. IEEE-ICBAIE, 2(1), 762-768. https://doi.org/10.1109/ICBAIE52039.2021.9389954

West, N., Syberg, M., & Deuse, J. (2022). A Holistic Methodology for Successive Bottleneck Analysis in Dy-namic Value Streams of Manufacturing Companies. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. S. S. Larsen, K. Nielsen, A. Napoleone, & S. Kjeldgaard (Eds.), Lecture Notes in Mechanical Engineer-ing. Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems (pp. 612-619). Springer International Publishing. https://doi.org/10.1007/978-3-030-90700-6_69

Wierse, A., & Riedel, T. (2017). Smart Data Analytics : Mit Hilfe Von Big Data Zusammenhänge Erkennen und Potentiale Nutzen. Walter de Gruyter GmbH. http://ebookcentral.proquest.com/lib/dortmundtech/detail.action?docID=4880126 https://doi.org/10.1515/9783110463958

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem