- -

Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Al-Khazraji, Huthaifa es_ES
dc.date.accessioned 2022-02-07T10:13:13Z
dc.date.available 2022-02-07T10:13:13Z
dc.date.issued 2022-01-31
dc.identifier.uri http://hdl.handle.net/10251/180597
dc.description.abstract [EN] Many important problems in engineering management can be formulated as Resource Assignment Problem (RAP). The Workers Assignment Problem (WAP) is considered as a sub-class of RAP which aims to find an optimal assignment of workers to a number of tasks in order to optimize certain objectives. WAP is an NP-hard combinatorial optimization problem. Due to its importance, several algorithms have been developed to solve it. In this paper, it is considered that a manager is required to provide a training course to his workers in order to improve their level of skill or experience to have a sustainable competitive advantage in the industry. The training cost of each worker to perform a particular job is different. The WAP is to find the best assignment of workers to training courses such that the total training cost is minimized. Two metaheuristic optimizations named Whale Optimization Algorithm (WOA) and Flower Pollination Algorithm (FPA) are utilized to final the optimal solution that reduces the total cost. MATLAB Software is used to perform the simulation of the two proposed methods into WAP. The computational results for a set of randomly generated problems of various sizes show that the FPA is able to find good quality solutions. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Servitization es_ES
dc.subject Resource Assignment Problem es_ES
dc.subject Workers Assignment Problem es_ES
dc.subject Metaheuristic Optimization es_ES
dc.subject Whale Optimization Algorithm es_ES
dc.subject Flower Pollination Algorithm es_ES
dc.title Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2022.16736
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Al-Khazraji, H. (2022). Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem. International Journal of Production Management and Engineering. 10(1):91-98. https://doi.org/10.4995/ijpme.2022.16736 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2022.16736 es_ES
dc.description.upvformatpinicio 91 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\16736 es_ES
dc.description.references Abdel-Basset, M., & Shawky, L. A. (2019). Flower pollination algorithm: a comprehensive review. Artificial Intelligence Review, 52(4), 2533-2557. https://doi.org/10.1007/s10462-018-9624-4 es_ES
dc.description.references Ammar, A., Pierreval, H., & Elkosentini, S. (2013). Workers assignment problems in manufacturing systems: A literature analysis. In Proceedings of 2013 international conference on industrial engineering and systems management (IESM) (pp. 1-7). IEEE. es_ES
dc.description.references Bouajaja, S., & Dridi, N. (2017). A survey on human resource allocation problem and its applications. Operational Research, 17(2), 339-369. https://doi.org/10.1007/s12351-016-0247-8 es_ES
dc.description.references Caron, G., Hansen, P., & Jaumard, B. (1999). The assignment problem with seniority and job priority constraints. Operations Research, 47(3), 449-453. https://doi.org/10.1287/opre.47.3.449 es_ES
dc.description.references Cattrysse, D. G., Salomon, M., & Van Wassenhove, L. N. (1994). A set partitioning heuristic for the generalized assignment problem. European Journal of Operational Research, 72(1), 167-174. https://doi.org/10.1016/0377-2217(94)90338-7 es_ES
dc.description.references Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23. https://doi.org/10.1016/S0305-0548(96)00032-9 es_ES
dc.description.references Demiral, M. F. (2017). Ant Colony Optimization for a Variety of Classic Assignment Problems. In International Turkish World Engineering and Science Congress, Antalya. es_ES
dc.description.references Halawi, A., & Haydar, N. (2018). Effects of Training on Employee Performance: A Case Study of Bonjus and Khatib & Alami Companies. International Humanities Studies, 5(2). es_ES
dc.description.references Jia, Z., & Gong, L. (2008). Multi-criteria human resource allocation for optimization problems using multi-objective particle swarm optimization algorithm. In 2008 International Conference on Computer Science and Software Engineering, 1, 1187-1190. IEEE. https://doi.org/10.1109/CSSE.2008.1506 es_ES
dc.description.references Koleva, N., & Andreev, O. (2018, June). Aspects of Training in the Field of Operations Management with Respect to Industry 4.0. In 2018 International Conference on High Technology for Sustainable Development (HiTech) (pp. 1-3). IEEE. https://doi.org/10.1109/HiTech.2018.8566581 es_ES
dc.description.references Krokhmal, P. A., & Pardalos, P. M. (2009). Random assignment problems. European Journal of Operational Research, 194(1), 1-17. https://doi.org/10.1016/j.ejor.2007.11.062 es_ES
dc.description.references Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2), 83-97. https://doi.org/10.1002/nav.3800020109 es_ES
dc.description.references Lin, J. T., & Chiu, C. C. (2018). A hybrid particle swarm optimization with local search for stochastic resource allocation problem. Journal of Intelligent Manufacturing, 29(3), 481-495. https://doi.org/10.1007/s10845-015-1124-7 es_ES
dc.description.references Mahmoud, K. I. (2009). Split Assignment With Transportation Model for Job-Shop Loading (Case Study). Journal of Engineering, 15(2). es_ES
dc.description.references Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 es_ES
dc.description.references Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational Research, 176(2), 774-793. https://doi.org/10.1016/j.ejor.2005.09.014 es_ES
dc.description.references Ross, G. T., & Soland, R. M. (1975). A branch and bound algorithm for the generalized assignment problem. Mathematical programming, 8(1), 91-103. https://doi.org/10.1007/BF01580430 es_ES
dc.description.references Ruiz, M., Igartua, J. I., Mindeguia, M., & Orobengoa, M. (2020). Understanding and representation of organizational training programs and their evaluation. International Journal of Production Management and Engineering, 8(2), 99-109. https://doi.org/10.4995/ijpme.2020.12271 es_ES
dc.description.references Satapathy, P., Mishra, S. P., Sahu, B. K., Debnath, M. K., & Mohanty, P. K. (2018, April). Design and implementation of whale optimization algorithm based PIDF controller for AGC problem in unified system. In International Conference on Soft Computing Systems (pp. 837-846). Springer, Singapore. https://doi.org/10.1007/978-981-13-1936-5_85 es_ES
dc.description.references Sharma, H. (2014). Importance and performance of managerial training in Indian companies-an empirical study. The Journal of Management Development, 33(2), 75-89. https://doi.org/10.1108/JMD-11-2013-0144 es_ES
dc.description.references Suliman, A. S. A. (2019). Using ant colony algorithm to find the optimal assignment. AL-Anbar University journal of Economic and Administration Sciences, 11(25). es_ES
dc.description.references Ostadi, B., Taghizadeh Yazdi, M., & Mohammadi Balani, A. (2021). Process Capability Studies in an Automated Flexible Assembly Process: A Case Study in an Automotive Industry. Iranian Journal of Management Studies, 14(1), 1-37. es_ES
dc.description.references Walsh, B. & Volini, E. (2017). Rewriting the rules for the digital age. Deloitte University Press. New York. es_ES
dc.description.references Wang, Z., Li, S., Wang, Y., & Li, S. (2009, August). The research of task assignment based on ant colony algorithm. In 2009 International Conference on Mechatronics and Automation (pp. 2334-2339). IEEE. es_ES
dc.description.references Xuezhi, Q., & Xuehua, W. (1996). Dynamic programming model of a sort of optimal assignment problem [J]. Mathematics In Practice and Theory, 3. es_ES
dc.description.references Yadav, N., Banerjee, K., & Bali, V. (2020). A survey on fatigue detection of workers using machine learning. International Journal of E-Health and Medical Communications (IJEHMC), 11(3), 1-8. https://doi.org/10.4018/IJEHMC.2020070101 es_ES
dc.description.references Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14 es_ES
dc.description.references Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem