- -

Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem

Mostrar el registro completo del ítem

Al-Khazraji, H. (2022). Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem. International Journal of Production Management and Engineering. 10(1):91-98. https://doi.org/10.4995/ijpme.2022.16736

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180597

Ficheros en el ítem

Metadatos del ítem

Título: Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem
Autor: Al-Khazraji, Huthaifa
Fecha difusión:
Resumen:
[EN] Many important problems in engineering management can be formulated as Resource Assignment Problem (RAP). The Workers Assignment Problem (WAP) is considered as a sub-class of RAP which aims to find an optimal assignment ...[+]
Palabras clave: Servitization , Resource Assignment Problem , Workers Assignment Problem , Metaheuristic Optimization , Whale Optimization Algorithm , Flower Pollination Algorithm
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Production Management and Engineering. (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2022.16736
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ijpme.2022.16736
Tipo: Artículo

References

Abdel-Basset, M., & Shawky, L. A. (2019). Flower pollination algorithm: a comprehensive review. Artificial Intelligence Review, 52(4), 2533-2557. https://doi.org/10.1007/s10462-018-9624-4

Ammar, A., Pierreval, H., & Elkosentini, S. (2013). Workers assignment problems in manufacturing systems: A literature analysis. In Proceedings of 2013 international conference on industrial engineering and systems management (IESM) (pp. 1-7). IEEE.

Bouajaja, S., & Dridi, N. (2017). A survey on human resource allocation problem and its applications. Operational Research, 17(2), 339-369. https://doi.org/10.1007/s12351-016-0247-8 [+]
Abdel-Basset, M., & Shawky, L. A. (2019). Flower pollination algorithm: a comprehensive review. Artificial Intelligence Review, 52(4), 2533-2557. https://doi.org/10.1007/s10462-018-9624-4

Ammar, A., Pierreval, H., & Elkosentini, S. (2013). Workers assignment problems in manufacturing systems: A literature analysis. In Proceedings of 2013 international conference on industrial engineering and systems management (IESM) (pp. 1-7). IEEE.

Bouajaja, S., & Dridi, N. (2017). A survey on human resource allocation problem and its applications. Operational Research, 17(2), 339-369. https://doi.org/10.1007/s12351-016-0247-8

Caron, G., Hansen, P., & Jaumard, B. (1999). The assignment problem with seniority and job priority constraints. Operations Research, 47(3), 449-453. https://doi.org/10.1287/opre.47.3.449

Cattrysse, D. G., Salomon, M., & Van Wassenhove, L. N. (1994). A set partitioning heuristic for the generalized assignment problem. European Journal of Operational Research, 72(1), 167-174. https://doi.org/10.1016/0377-2217(94)90338-7

Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23. https://doi.org/10.1016/S0305-0548(96)00032-9

Demiral, M. F. (2017). Ant Colony Optimization for a Variety of Classic Assignment Problems. In International Turkish World Engineering and Science Congress, Antalya.

Halawi, A., & Haydar, N. (2018). Effects of Training on Employee Performance: A Case Study of Bonjus and Khatib & Alami Companies. International Humanities Studies, 5(2).

Jia, Z., & Gong, L. (2008). Multi-criteria human resource allocation for optimization problems using multi-objective particle swarm optimization algorithm. In 2008 International Conference on Computer Science and Software Engineering, 1, 1187-1190. IEEE. https://doi.org/10.1109/CSSE.2008.1506

Koleva, N., & Andreev, O. (2018, June). Aspects of Training in the Field of Operations Management with Respect to Industry 4.0. In 2018 International Conference on High Technology for Sustainable Development (HiTech) (pp. 1-3). IEEE. https://doi.org/10.1109/HiTech.2018.8566581

Krokhmal, P. A., & Pardalos, P. M. (2009). Random assignment problems. European Journal of Operational Research, 194(1), 1-17. https://doi.org/10.1016/j.ejor.2007.11.062

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2), 83-97. https://doi.org/10.1002/nav.3800020109

Lin, J. T., & Chiu, C. C. (2018). A hybrid particle swarm optimization with local search for stochastic resource allocation problem. Journal of Intelligent Manufacturing, 29(3), 481-495. https://doi.org/10.1007/s10845-015-1124-7

Mahmoud, K. I. (2009). Split Assignment With Transportation Model for Job-Shop Loading (Case Study). Journal of Engineering, 15(2).

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational Research, 176(2), 774-793. https://doi.org/10.1016/j.ejor.2005.09.014

Ross, G. T., & Soland, R. M. (1975). A branch and bound algorithm for the generalized assignment problem. Mathematical programming, 8(1), 91-103. https://doi.org/10.1007/BF01580430

Ruiz, M., Igartua, J. I., Mindeguia, M., & Orobengoa, M. (2020). Understanding and representation of organizational training programs and their evaluation. International Journal of Production Management and Engineering, 8(2), 99-109. https://doi.org/10.4995/ijpme.2020.12271

Satapathy, P., Mishra, S. P., Sahu, B. K., Debnath, M. K., & Mohanty, P. K. (2018, April). Design and implementation of whale optimization algorithm based PIDF controller for AGC problem in unified system. In International Conference on Soft Computing Systems (pp. 837-846). Springer, Singapore. https://doi.org/10.1007/978-981-13-1936-5_85

Sharma, H. (2014). Importance and performance of managerial training in Indian companies-an empirical study. The Journal of Management Development, 33(2), 75-89. https://doi.org/10.1108/JMD-11-2013-0144

Suliman, A. S. A. (2019). Using ant colony algorithm to find the optimal assignment. AL-Anbar University journal of Economic and Administration Sciences, 11(25).

Ostadi, B., Taghizadeh Yazdi, M., & Mohammadi Balani, A. (2021). Process Capability Studies in an Automated Flexible Assembly Process: A Case Study in an Automotive Industry. Iranian Journal of Management Studies, 14(1), 1-37.

Walsh, B. & Volini, E. (2017). Rewriting the rules for the digital age. Deloitte University Press. New York.

Wang, Z., Li, S., Wang, Y., & Li, S. (2009, August). The research of task assignment based on ant colony algorithm. In 2009 International Conference on Mechatronics and Automation (pp. 2334-2339). IEEE.

Xuezhi, Q., & Xuehua, W. (1996). Dynamic programming model of a sort of optimal assignment problem [J]. Mathematics In Practice and Theory, 3.

Yadav, N., Banerjee, K., & Bali, V. (2020). A survey on fatigue detection of workers using machine learning. International Journal of E-Health and Medical Communications (IJEHMC), 11(3), 1-8. https://doi.org/10.4018/IJEHMC.2020070101

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem