Cordero Barbero, A.; Jordan-Lluch, C.; Sanabria-Codesal, E.; Torregrosa Sánchez, JR. (2021). Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems. Fractal and Fractional. 5(3):1-16. https://doi.org/10.3390/fractalfract5030125
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181023
Title:
|
Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems
|
Author:
|
Cordero Barbero, Alicia
Jordan-Lluch, Cristina
Sanabria-Codesal, Esther
Torregrosa Sánchez, Juan Ramón
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] A new parametric family of iterative schemes for solving nonlinear systems is presented. Fourth-order convergence is demonstrated and its stability is analyzed as a function of the parameter values. This study allows ...[+]
[EN] A new parametric family of iterative schemes for solving nonlinear systems is presented. Fourth-order convergence is demonstrated and its stability is analyzed as a function of the parameter values. This study allows us to detect the most stable elements of the class, to find the fractals in the boundary of the basins of attraction and to reject those with chaotic behavior. Some numerical tests show the performance of the new methods, confirm the theoretical results and allow to compare the proposed schemes with other known ones
[-]
|
Subjects:
|
Nonlinear systems
,
Iterative methods
,
Convergence
,
Stability
,
Discrete dynamics
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
Fractal and Fractional. (eissn:
2504-3110
)
|
DOI:
|
10.3390/fractalfract5030125
|
Publisher:
|
MDPI AG
|
Publisher version:
|
https://doi.org/10.3390/fractalfract5030125
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094889-B-I00/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/
|
Thanks:
|
This research was supported by PGC2018-095896-B-C22, PID2019-107790RB-C22 and PGC2018-094889-B-I00 (MCIU/AEI/FEDER, UE).
|
Type:
|
Artículo
|