- -

Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems

Show simple item record

Files in this item

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Jordan-Lluch, Cristina es_ES
dc.contributor.author Sanabria-Codesal, Esther es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2022-02-21T19:03:33Z
dc.date.available 2022-02-21T19:03:33Z
dc.date.issued 2021 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181023
dc.description.abstract [EN] A new parametric family of iterative schemes for solving nonlinear systems is presented. Fourth-order convergence is demonstrated and its stability is analyzed as a function of the parameter values. This study allows us to detect the most stable elements of the class, to find the fractals in the boundary of the basins of attraction and to reject those with chaotic behavior. Some numerical tests show the performance of the new methods, confirm the theoretical results and allow to compare the proposed schemes with other known ones es_ES
dc.description.sponsorship This research was supported by PGC2018-095896-B-C22, PID2019-107790RB-C22 and PGC2018-094889-B-I00 (MCIU/AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Fractal and Fractional es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear systems es_ES
dc.subject Iterative methods es_ES
dc.subject Convergence es_ES
dc.subject Stability es_ES
dc.subject Discrete dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/fractalfract5030125 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094889-B-I00/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Jordan-Lluch, C.; Sanabria-Codesal, E.; Torregrosa Sánchez, JR. (2021). Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems. Fractal and Fractional. 5(3):1-16. https://doi.org/10.3390/fractalfract5030125 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/fractalfract5030125 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2504-3110 es_ES
dc.relation.pasarela S\446790 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES es_ES
upv.costeAPC 1000 es_ES


This item appears in the following Collection(s)

Show simple item record