Mostrar el registro sencillo del ítem
dc.contributor.author | Pebesma, Joyce | es_ES |
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Sacchi, Lucia | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.contributor.author | De Cata, Pasquale | es_ES |
dc.contributor.author | Chiovato, Luca | es_ES |
dc.contributor.author | Bellazzi, Riccardo | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.date.accessioned | 2022-03-10T11:30:06Z | |
dc.date.available | 2022-03-10T11:30:06Z | |
dc.date.issued | 2019-07-27 | es_ES |
dc.identifier.isbn | 978-1-5386-1311-5 | es_ES |
dc.identifier.issn | 1558-4615 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181361 | |
dc.description.abstract | [EN] Patients with type 2 diabetes have a higher chance of developing cardiovascular diseases and an increased odds of mortality. Reliability of randomized clinical trials is continuously judged due to selection, attrition and reporting bias. Moreover, cardiovascular risk is frequently assessed in cross-sectional studies instead of observing the evolution of risk in longitudinal cohorts. In order to correctly assess the course of cardiovascular riskinpatientswithtype 2 diabetes, weappliedprocessminingtechniquesbasedontheprinciples of evidence-based medicine. Using a validated formulation of the cardiovascular risk, process mining allowed to cluster frequent risk pathways and produced 3 major trajectories related to risk management: high risk, medium risk and low risk.This enables the extractionofmeaningful distributions, such as the gender of the patients per cluster in a human understandable manner, leading to more insights to improve themanagementofcardiovasculardiseasesintype2diabetes patients. | es_ES |
dc.description.sponsorship | This work was supported by European Commission Grant No 600914 (MOSAIC Project). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EMBC.2019.8856507 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/600914/EU/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Pebesma, J.; Martinez-Millana, A.; Sacchi, L.; Fernández Llatas, C.; De Cata, P.; Chiovato, L.; Bellazzi, R.... (2019). Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining. IEEE. 341-344. https://doi.org/10.1109/EMBC.2019.8856507 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 41st International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2019) | es_ES |
dc.relation.conferencedate | Julio 23-27,2019 | es_ES |
dc.relation.conferenceplace | Berlin, Germany | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EMBC.2019.8856507 | es_ES |
dc.description.upvformatpinicio | 341 | es_ES |
dc.description.upvformatpfin | 344 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 31945911 | es_ES |
dc.relation.pasarela | S\394920 | es_ES |
dc.contributor.funder | European Commission | es_ES |