- -

Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pebesma, Joyce es_ES
dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Sacchi, Lucia es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.contributor.author De Cata, Pasquale es_ES
dc.contributor.author Chiovato, Luca es_ES
dc.contributor.author Bellazzi, Riccardo es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.date.accessioned 2022-03-10T11:30:06Z
dc.date.available 2022-03-10T11:30:06Z
dc.date.issued 2019-07-27 es_ES
dc.identifier.isbn 978-1-5386-1311-5 es_ES
dc.identifier.issn 1558-4615 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181361
dc.description.abstract [EN] Patients with type 2 diabetes have a higher chance of developing cardiovascular diseases and an increased odds of mortality. Reliability of randomized clinical trials is continuously judged due to selection, attrition and reporting bias. Moreover, cardiovascular risk is frequently assessed in cross-sectional studies instead of observing the evolution of risk in longitudinal cohorts. In order to correctly assess the course of cardiovascular riskinpatientswithtype 2 diabetes, weappliedprocessminingtechniquesbasedontheprinciples of evidence-based medicine. Using a validated formulation of the cardiovascular risk, process mining allowed to cluster frequent risk pathways and produced 3 major trajectories related to risk management: high risk, medium risk and low risk.This enables the extractionofmeaningful distributions, such as the gender of the patients per cluster in a human understandable manner, leading to more insights to improve themanagementofcardiovasculardiseasesintype2diabetes patients. es_ES
dc.description.sponsorship This work was supported by European Commission Grant No 600914 (MOSAIC Project). es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EMBC.2019.8856507 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600914/EU/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pebesma, J.; Martinez-Millana, A.; Sacchi, L.; Fernández Llatas, C.; De Cata, P.; Chiovato, L.; Bellazzi, R.... (2019). Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining. IEEE. 341-344. https://doi.org/10.1109/EMBC.2019.8856507 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 41st International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2019) es_ES
dc.relation.conferencedate Julio 23-27,2019 es_ES
dc.relation.conferenceplace Berlin, Germany es_ES
dc.relation.publisherversion https://doi.org/10.1109/EMBC.2019.8856507 es_ES
dc.description.upvformatpinicio 341 es_ES
dc.description.upvformatpfin 344 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.pmid 31945911 es_ES
dc.relation.pasarela S\394920 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem