- -

Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

Mostrar el registro completo del ítem

Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181373

Ficheros en el ítem

Metadatos del ítem

Título: Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators
Autor: Kumar, Abhimanyu Gupta, D. K. Martínez Molada, Eulalia Hueso, José L.
Fecha difusión:
Resumen:
[EN] In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods are studied for solving nonlinear equations in Banach space settings. Their semilocal convergence is established using ...[+]
Palabras clave: Nonlinear equations , Divided differences , Semilocal convergence , Domain of parameters , Dynamical analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-020-00922-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11075-020-00922-9
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.
Tipo: Artículo

References

Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001)

Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012)

Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011) [+]
Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001)

Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012)

Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011)

Hongmin, R., Ioannis, K.A.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. comput. 218(14), 7655–7664 (2012)

Ioannis, Ioannis K.A., Hongmin, R.: On the semilocal convergence of derivative free methods for solving nonlinear equations. J. Numer. Anal. Approx. Theory 41 (1), 3–17 (2012)

Hongmin, R., Ioannis, K.A.: On the convergence of King-Werner-type methods of order $1+\sqrt {2}$ free of derivatives. Appl. Math. Comput. 256, 148–159 (2015)

Kumar, A., Gupta, D.K., Martínez, E., Sukhjit, S.: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. J. Comput. Appl. Math. 330, 732–741 (2018)

Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt–Schwetlick”. J. Optim. Theory Appl. 160 (3), 931–948 (2014)

Louis, B.R.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969)

Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

Parisa, B., Cordero, A., Taher, L., Kathayoun, M., Torregrosa, J.R.: Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics 87 (2), 913–938 (2017)

Chun, C., Neta, B.: The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016)

Magreñán, Á. A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

Ramandeep, B., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 303, 70–88 (2017)

Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. Trans Ame Soc. Mech. Eng. J. Mech. Des. 124(4), 642–645 (2002)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem