Mostrar el registro sencillo del ítem
dc.contributor.author | Kumar, Abhimanyu | es_ES |
dc.contributor.author | Gupta, D. K. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Hueso, José L. | es_ES |
dc.date.accessioned | 2022-03-10T19:04:17Z | |
dc.date.available | 2022-03-10T19:04:17Z | |
dc.date.issued | 2021-03 | es_ES |
dc.identifier.issn | 1017-1398 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181373 | |
dc.description.abstract | [EN] In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods are studied for solving nonlinear equations in Banach space settings. Their semilocal convergence is established using recurrence relations under weaker continuity conditions on first-order divided differences. Convergence theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz condition is defined on the first-order divided differences and its influence on the domain of starting iterates is compared with those corresponding to the domain of Lipschitz conditions. Several numerical examples including Automotive Steering problems and nonlinear mixed Hammerstein-type integral equations are analyzed, and the output results are compared with those obtained by some of similar existing iterative methods. It is found that improved results are obtained for all the numerical examples. Further, the dynamical analysis of the iterative method is carried out. It confirms that the proposed iterative method has better stability properties than its competitors. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Divided differences | es_ES |
dc.subject | Semilocal convergence | es_ES |
dc.subject | Domain of parameters | es_ES |
dc.subject | Dynamical analysis | es_ES |
dc.title | Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-020-00922-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11075-020-00922-9 | es_ES |
dc.description.upvformatpinicio | 1051 | es_ES |
dc.description.upvformatpfin | 1070 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 86 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\422741 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001) | es_ES |
dc.description.references | Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012) | es_ES |
dc.description.references | Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011) | es_ES |
dc.description.references | Hongmin, R., Ioannis, K.A.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. comput. 218(14), 7655–7664 (2012) | es_ES |
dc.description.references | Ioannis, Ioannis K.A., Hongmin, R.: On the semilocal convergence of derivative free methods for solving nonlinear equations. J. Numer. Anal. Approx. Theory 41 (1), 3–17 (2012) | es_ES |
dc.description.references | Hongmin, R., Ioannis, K.A.: On the convergence of King-Werner-type methods of order $1+\sqrt {2}$ free of derivatives. Appl. Math. Comput. 256, 148–159 (2015) | es_ES |
dc.description.references | Kumar, A., Gupta, D.K., Martínez, E., Sukhjit, S.: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. J. Comput. Appl. Math. 330, 732–741 (2018) | es_ES |
dc.description.references | Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt–Schwetlick”. J. Optim. Theory Appl. 160 (3), 931–948 (2014) | es_ES |
dc.description.references | Louis, B.R.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969) | es_ES |
dc.description.references | Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994) | es_ES |
dc.description.references | Parisa, B., Cordero, A., Taher, L., Kathayoun, M., Torregrosa, J.R.: Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics 87 (2), 913–938 (2017) | es_ES |
dc.description.references | Chun, C., Neta, B.: The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016) | es_ES |
dc.description.references | Magreñán, Á. A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) | es_ES |
dc.description.references | Ramandeep, B., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 303, 70–88 (2017) | es_ES |
dc.description.references | Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. Trans Ame Soc. Mech. Eng. J. Mech. Des. 124(4), 642–645 (2002) | es_ES |