- -

Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kumar, Abhimanyu es_ES
dc.contributor.author Gupta, D. K. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Hueso, José L. es_ES
dc.date.accessioned 2022-03-10T19:04:17Z
dc.date.available 2022-03-10T19:04:17Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181373
dc.description.abstract [EN] In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods are studied for solving nonlinear equations in Banach space settings. Their semilocal convergence is established using recurrence relations under weaker continuity conditions on first-order divided differences. Convergence theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz condition is defined on the first-order divided differences and its influence on the domain of starting iterates is compared with those corresponding to the domain of Lipschitz conditions. Several numerical examples including Automotive Steering problems and nonlinear mixed Hammerstein-type integral equations are analyzed, and the output results are compared with those obtained by some of similar existing iterative methods. It is found that improved results are obtained for all the numerical examples. Further, the dynamical analysis of the iterative method is carried out. It confirms that the proposed iterative method has better stability properties than its competitors. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Divided differences es_ES
dc.subject Semilocal convergence es_ES
dc.subject Domain of parameters es_ES
dc.subject Dynamical analysis es_ES
dc.title Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-020-00922-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11075-020-00922-9 es_ES
dc.description.upvformatpinicio 1051 es_ES
dc.description.upvformatpfin 1070 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\422741 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001) es_ES
dc.description.references Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012) es_ES
dc.description.references Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011) es_ES
dc.description.references Hongmin, R., Ioannis, K.A.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. comput. 218(14), 7655–7664 (2012) es_ES
dc.description.references Ioannis, Ioannis K.A., Hongmin, R.: On the semilocal convergence of derivative free methods for solving nonlinear equations. J. Numer. Anal. Approx. Theory 41 (1), 3–17 (2012) es_ES
dc.description.references Hongmin, R., Ioannis, K.A.: On the convergence of King-Werner-type methods of order $1+\sqrt {2}$ free of derivatives. Appl. Math. Comput. 256, 148–159 (2015) es_ES
dc.description.references Kumar, A., Gupta, D.K., Martínez, E., Sukhjit, S.: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. J. Comput. Appl. Math. 330, 732–741 (2018) es_ES
dc.description.references Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt–Schwetlick”. J. Optim. Theory Appl. 160 (3), 931–948 (2014) es_ES
dc.description.references Louis, B.R.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969) es_ES
dc.description.references Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994) es_ES
dc.description.references Parisa, B., Cordero, A., Taher, L., Kathayoun, M., Torregrosa, J.R.: Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics 87 (2), 913–938 (2017) es_ES
dc.description.references Chun, C., Neta, B.: The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016) es_ES
dc.description.references Magreñán, Á. A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) es_ES
dc.description.references Ramandeep, B., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 303, 70–88 (2017) es_ES
dc.description.references Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. Trans Ame Soc. Mech. Eng. J. Mech. Des. 124(4), 642–645 (2002) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem