- -

Acoustics in 2D Spaces of Constant Curvature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustics in 2D Spaces of Constant Curvature

Mostrar el registro completo del ítem

Tung, MM.; Gambi, JM.; María Luisa García del Pino (2016). Acoustics in 2D Spaces of Constant Curvature. Springer. 483-489. https://doi.org/10.1007/978-3-319-63082-3_75

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181571

Ficheros en el ítem

Metadatos del ítem

Título: Acoustics in 2D Spaces of Constant Curvature
Autor: Tung, Michael Ming-Sha Gambi, José M. María Luisa García del Pino
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this work, we will consider a locally homogeneous and isotropic (2+1)D spacetime of Robertson-Walker type and therefore with underlying de Sitter space.
Palabras clave: Transformation acoustics , Curved acoustic spaces , Conformally flat Lorentzian manifolds , Acoustic metamaterials
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-319-63081-6
Fuente:
Progress in Industrial Mathematics at ECMI 2016.
DOI: 10.1007/978-3-319-63082-3_75
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-319-63082-3_75
Título del congreso: 19th European Conference on Mathematics for Industry (ECMI 2016)
Lugar del congreso: Santiago de Compostela, Spain
Fecha congreso: Junio 13-17,2016
Serie: Mathematics in Industry;26
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-59294-P/ES/FUNCIONES DE MATRICES: CALCULO Y APLICACIONES/
Agradecimientos:
M. M. T. wishes to thank the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF) for financial support under grant TIN2014-59294-P
Tipo: Comunicación en congreso Capítulo de libro

References

Beals, R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Not. Am. Math. Soc. 60(7), 866–872 (2013)

Chen, H.Y., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D 43(11), 113001 (2010)

Choquet-Bruhat, Y., Damour, T.: Introduction to General Relativity, Black Holes, and Cosmology. Oxford University Press, Oxford (2015) [+]
Beals, R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Not. Am. Math. Soc. 60(7), 866–872 (2013)

Chen, H.Y., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D 43(11), 113001 (2010)

Choquet-Bruhat, Y., Damour, T.: Introduction to General Relativity, Black Holes, and Cosmology. Oxford University Press, Oxford (2015)

Cummer, S.A.: Transformation acoustics. In: Craster, V.R., Guenneau, S. (eds.) Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, pp. 197–218. Springer Netherlands, Dordrecht (2013)

Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9(3), 45–52 (2007)

Islam, J.N.: An Introduction to Mathematical Cosmology. Cambridge University Press, Cambridge (2001)

Kalnins, E.G.: Separation of Variables for Riemannian Spaces of Constant Curvature. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, New York (1986)

Kuchowicz, B.: Conformally flat space-time of spherical symmetry in isotropic coordinates. Int. J. Theor. Phys. 7(4), 259–262 (1973)

Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York (1970)

Mechel, F.P.: Formulas of Acoustics. Springer, Berlin (2002)

Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125(2), 839–849 (2009)

Redkov, V.M., Ovsiyuk, E.M.: Quantum mechanics in spaces of constant curvature. In: Contemporary Fundamental Physics. Nova Science, New York (2012)

Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. London Mathematical Society Student Text, vol. 31. Cambridge University Press, Cambridge (1997)

Tung, M.M.: A fundamental Lagrangian approach to transformation acoustics and spherical spacetime cloaking. Europhys. Lett. 98, 34002–34006 (2012)

Tung, M.M., Peinado, J.: A covariant spacetime approach to transformation acoustics. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol. 19. Springer, Berlin (2014)

Tung, M.M., Weinmüller, E.B.: Gravitational frequency shifts in transformation acoustics. Europhys. Lett. 101, 54006–54011 (2013)

Tung, M.M., Gambi, J.M., García del Pino, M.L.: Maxwell’s fish-eye in (2+1)D spacetime acoustics. In: Russo, G.R., Capasso, V., Nicosia, G., Romano, V. (eds.) Progress in Industrial Mathematics at ECMI 2014. Mathematics in Industry, vol. 22. Springer, Berlin (2016)

Visser, M., Barceló, C., Liberati, S.: Analogue models of and for gravity. Gen. Rel. Grav. 34, 1719–1734 (2002)

Wolf, J.A.: Spaces of Constant Curvature. American Mathematical Society, Providence, Rhode Island (2011)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem