Mostrar el registro sencillo del ítem
dc.contributor.author | Tung, Michael Ming-Sha | es_ES |
dc.contributor.author | Gambi, José M. | es_ES |
dc.contributor.author | María Luisa García del Pino | es_ES |
dc.date.accessioned | 2022-03-28T06:17:55Z | |
dc.date.available | 2022-03-28T06:17:55Z | |
dc.date.issued | 2016-06-17 | es_ES |
dc.identifier.isbn | 978-3-319-63081-6 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181571 | |
dc.description.abstract | [EN] In this work, we will consider a locally homogeneous and isotropic (2+1)D spacetime of Robertson-Walker type and therefore with underlying de Sitter space. | es_ES |
dc.description.sponsorship | M. M. T. wishes to thank the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF) for financial support under grant TIN2014-59294-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Progress in Industrial Mathematics at ECMI 2016 | es_ES |
dc.relation.ispartofseries | Mathematics in Industry;26 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Transformation acoustics | es_ES |
dc.subject | Curved acoustic spaces | es_ES |
dc.subject | Conformally flat Lorentzian manifolds | es_ES |
dc.subject | Acoustic metamaterials | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Acoustics in 2D Spaces of Constant Curvature | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-319-63082-3_75 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-59294-P/ES/FUNCIONES DE MATRICES: CALCULO Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Tung, MM.; Gambi, JM.; María Luisa García del Pino (2016). Acoustics in 2D Spaces of Constant Curvature. Springer. 483-489. https://doi.org/10.1007/978-3-319-63082-3_75 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 19th European Conference on Mathematics for Industry (ECMI 2016) | es_ES |
dc.relation.conferencedate | Junio 13-17,2016 | es_ES |
dc.relation.conferenceplace | Santiago de Compostela, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-319-63082-3_75 | es_ES |
dc.description.upvformatpinicio | 483 | es_ES |
dc.description.upvformatpfin | 489 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\353026 | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Beals, R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Not. Am. Math. Soc. 60(7), 866–872 (2013) | es_ES |
dc.description.references | Chen, H.Y., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D 43(11), 113001 (2010) | es_ES |
dc.description.references | Choquet-Bruhat, Y., Damour, T.: Introduction to General Relativity, Black Holes, and Cosmology. Oxford University Press, Oxford (2015) | es_ES |
dc.description.references | Cummer, S.A.: Transformation acoustics. In: Craster, V.R., Guenneau, S. (eds.) Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, pp. 197–218. Springer Netherlands, Dordrecht (2013) | es_ES |
dc.description.references | Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9(3), 45–52 (2007) | es_ES |
dc.description.references | Islam, J.N.: An Introduction to Mathematical Cosmology. Cambridge University Press, Cambridge (2001) | es_ES |
dc.description.references | Kalnins, E.G.: Separation of Variables for Riemannian Spaces of Constant Curvature. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, New York (1986) | es_ES |
dc.description.references | Kuchowicz, B.: Conformally flat space-time of spherical symmetry in isotropic coordinates. Int. J. Theor. Phys. 7(4), 259–262 (1973) | es_ES |
dc.description.references | Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York (1970) | es_ES |
dc.description.references | Mechel, F.P.: Formulas of Acoustics. Springer, Berlin (2002) | es_ES |
dc.description.references | Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125(2), 839–849 (2009) | es_ES |
dc.description.references | Redkov, V.M., Ovsiyuk, E.M.: Quantum mechanics in spaces of constant curvature. In: Contemporary Fundamental Physics. Nova Science, New York (2012) | es_ES |
dc.description.references | Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. London Mathematical Society Student Text, vol. 31. Cambridge University Press, Cambridge (1997) | es_ES |
dc.description.references | Tung, M.M.: A fundamental Lagrangian approach to transformation acoustics and spherical spacetime cloaking. Europhys. Lett. 98, 34002–34006 (2012) | es_ES |
dc.description.references | Tung, M.M., Peinado, J.: A covariant spacetime approach to transformation acoustics. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol. 19. Springer, Berlin (2014) | es_ES |
dc.description.references | Tung, M.M., Weinmüller, E.B.: Gravitational frequency shifts in transformation acoustics. Europhys. Lett. 101, 54006–54011 (2013) | es_ES |
dc.description.references | Tung, M.M., Gambi, J.M., García del Pino, M.L.: Maxwell’s fish-eye in (2+1)D spacetime acoustics. In: Russo, G.R., Capasso, V., Nicosia, G., Romano, V. (eds.) Progress in Industrial Mathematics at ECMI 2014. Mathematics in Industry, vol. 22. Springer, Berlin (2016) | es_ES |
dc.description.references | Visser, M., Barceló, C., Liberati, S.: Analogue models of and for gravity. Gen. Rel. Grav. 34, 1719–1734 (2002) | es_ES |
dc.description.references | Wolf, J.A.: Spaces of Constant Curvature. American Mathematical Society, Providence, Rhode Island (2011) | es_ES |