- -

Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications

Show full item record

Romero-Gavilán, F.; Cerqueira, A.; Anitua, E.; Tejero, R.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.... (2021). Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications. JBIC Journal of Biological Inorganic Chemistry. 26(6):1-12. https://doi.org/10.1007/s00775-021-01886-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181744

Files in this item

Item Metadata

Title: Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications
Author: Romero-Gavilán, Francisco Cerqueira, Andreia Anitua, Eduardo Tejero, Ricardo García-Arnáez, Iñaki Martínez-Ramos, Cristina Ozturan, Seda Izquierdo, Raul Azkargorta, Mikel Elortza, Félix Gurruchaga, Mariló Goñi, Isabel Suay, Julio
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Calcium ions are used in the development of biomaterials for the promotion of coagulation, bone regeneration, and implant osseointegration. Upon implantation, the time-dependent release of calcium ions from titanium ...[+]
Subjects: Proteomics , Bioinorganic chemistry , Dental implants , Osseointegration , Blood clotting
Copyrigths: Reconocimiento (by)
Source:
JBIC Journal of Biological Inorganic Chemistry. (issn: 0949-8257 )
DOI: 10.1007/s00775-021-01886-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00775-021-01886-4
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F 2020%2F069/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/
info:eu-repo/grantAgreement/MINECO//RTC-2017-6147-1/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2020%2F036/
info:eu-repo/grantAgreement/UPV/EHU//GIU18%2F189/
info:eu-repo/grantAgreement/UJI//UJI-B2017-37/
[-]
Thanks:
This work was supported by MINECO [MAT2017-86043-R; RTC-2017-6147-1], Generalitat Valenciana [GRISOLIAP/2018/091; APOSTD/2020/036, PROMETEO/2020/069], Universitat Jaume I under [ UJI-B2017-37], the University of the Basque ...[+]
Type: Artículo

References

Ren N, Li J, Qiu J et al (2014) Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small 10:3169–3180. https://doi.org/10.1002/smll.201303391

Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci. https://doi.org/10.1007/s10853-017-1010-0

Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014 [+]
Ren N, Li J, Qiu J et al (2014) Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small 10:3169–3180. https://doi.org/10.1002/smll.201303391

Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci. https://doi.org/10.1007/s10853-017-1010-0

Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014

Scheraga HA (2004) The thrombin–fibrinogen interaction. Biophys Chem 112:117–130. https://doi.org/10.1016/j.bpc.2004.07.011

Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718. https://doi.org/10.1007/s00441-014-1918-5

Huang P (2018) Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 47:271–646. https://doi.org/10.1039/c6cs00746e

Subir C, Masuet-aumatell C, Alonso CR et al (2019) Assessment of dental implants with modified calcium-phosphate surface in a multicenter, prospective, non-interventional study: results up to 50 months of follow-up. J Funct Biomater 10:1–14. https://doi.org/10.3390/jfb10010005

De LS, Jansen JA, Bronkhorst EM et al (2020) Stabilizing dental implants with a fiber-reinforced calcium phosphate cement: an in vitro and in vivo study. Acta Biomater 110:280–288. https://doi.org/10.1016/j.actbio.2020.03.026

Doe Y, Ida H, Seiryu M et al (2020) Titanium surface treatment by calcium modification with acid-etching promotes osteogenic activity and stability of dental implants. Materialia 12:100801. https://doi.org/10.1016/j.mtla.2020.100801

Anitua E, Piñas L, Murias A et al (2015) Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces 130:173–181. https://doi.org/10.1016/j.colsurfb.2015.04.006

Anitua E, Prado R, Orive G, Tejero R (2015) Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res Part A 103:969–980. https://doi.org/10.1002/jbm.a.35240

Romero-Gavilán F, Araújo-Gomes N, Cerqueira A et al (2019) Proteomic analysis of calcium-enriched sol–gel biomaterials. J Biol Inorg Chem 24:563–574. https://doi.org/10.1007/s00775-019-01662-5

Kim J (2020) Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf B Biointerfaces 188:110756. https://doi.org/10.1016/j.colsurfb.2019.110756

Kubiak-Ossowska K, Jachimska B, Al Qaraghuli M, Mulheran PA (2019) Protein interactions with negatively charged inorganic surfaces. Curr Opin Colloid Interface Sci 41:104–117. https://doi.org/10.1016/j.cocis.2019.02.001

Siow KS, Britcher L, Kumar S, Griesser HJ (2019) QCM-D and XPS study of protein adsorption on plasma polymers with sulfonate and phosphonate surface groups. Colloids Surf B Biointerfaces 173:447–453. https://doi.org/10.1016/j.colsurfb.2018.10.015

Holmberg M, Stibius KB, Larsen NB, Hou X (2008) Competitive protein adsorption to polymer surfaces from human serum. J Mater Sci Mater Med 19:2179–2185. https://doi.org/10.1007/s10856-007-3318-9

Ratner BD, Horbett TA (2013) Chapter II.3.5—Evaluation of blood–materials interactions. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JEBT-BS (eds) Biomaterials Science, 3rd edn. Academic Press, Massachusetts

Brash JL, Horbett TA, Latour RA, Tengvall P (2019) The blood compatibility challenge. Part 2: protein adsorption phenomena governing blood reactivity. Acta Biomater 94:11–24. https://doi.org/10.1016/j.actbio.2019.06.022

Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039

Othman Z, Cillero Pastor B, van Rijt S, Habibovic P (2018) Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 167:191–204. https://doi.org/10.1016/j.biomaterials.2018.03.020

Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime ? Trends Immunol 28:184–192. https://doi.org/10.1016/j.it.2007.02.006

Hiraguchi Y, Nagahashi K, Shibayama T et al (2014) Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers. Acta Biomater 10:2988–2995. https://doi.org/10.1016/j.actbio.2014.03.019

Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689. https://doi.org/10.1080/08927014.2017.1356289

Silva-Bermudez P, Rodil SE (2013) An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol 233:147–158. https://doi.org/10.1016/j.surfcoat.2013.04.028

Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111. https://doi.org/10.1080/08927014.2016.1259414

Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:377–362. https://doi.org/10.1038/nmeth.1322

Anitua E, Tejero R, Zalduendo MM, Orive G (2013) Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol 84:1180–1190. https://doi.org/10.1902/jop.2012.120292

Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:23–30. https://doi.org/10.2215/CJN.05910809

Gomes NA, Gavilán FR, Zhang Y et al (2019) Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surf B Biointerfaces 181:125–133. https://doi.org/10.1016/j.colsurfb.2019.05.039

Chen H, Yuan L, Song W et al (2008) Biocompatible polymer materials: role of protein-surface interactions. Prog Polym Sci 33:1059–1087. https://doi.org/10.1016/j.progpolymsci.2008.07.006

Kalathottukaren MT, Kizhakkedathu JN (2018) Mechanisms of blood coagulation in response to biomaterials: extrinsic factors. In: Siedlecki CA (ed) Hemocompatibility of biomaterials for clinical applications. Blood–biomaterials interactions. Woodhead Publishing, pp 29–49

Acquasaliente L, Pelc LA, Di Cera E (2019) Probing prothrombin structure by limited proteolysis. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-42524-z

Sánchez J, Elgue G, Riesenfeld J, Olsson P (1997) Inhibition of the plasma contact activation system of immobilized heparin: relation to surface density of functional antithrombin binding sites. J Biomed Mater Res 37:37–42. https://doi.org/10.1002/(SICI)1097-4636(199710)37:1%3c37::AID-JBM5%3e3.0.CO;2-K

Cho J, Mosher DF (2006) Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–1469. https://doi.org/10.1111/j.1538-7836.2006.01943.x

Tejero R, Rossbach P, Keller B et al (2013) Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir 29:902–912. https://doi.org/10.1021/la303360f

Sánchez-Ilárduya MB, Trouche E, Tejero R et al (2013) Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res Part A 101:1478–1488. https://doi.org/10.1002/jbm.a.34428

Hong J, Azens A, Ekdahl KN et al (2005) Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials 26:1397–1403. https://doi.org/10.1016/j.biomaterials.2004.05.036

Barradas AMC, Fernandes HAM, Groen N et al (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33:3205–3215. https://doi.org/10.1016/j.biomaterials.2012.01.020

Kanaya S, Nemoto E, Ebe Y et al (2010) Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts. Bone 47:564–572. https://doi.org/10.1016/j.bone.2010.05.042

Won S, Huh YH, Cho LR et al (2017) Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regen Med 14:123–131. https://doi.org/10.1007/s13770-017-0028-3

Ma Y, Zhou Y, Wu F et al (2018) The bidirectional interactions between inflammation and coagulation in fracture hematoma. Tissue Eng Part B Rev 25:46–54. https://doi.org/10.1089/ten.teb.2018.0157

Battiston KG, Ouyang B, Honarparvar E et al (2015) Interaction of a block-co-polymeric biomaterial with immunoglobulin G modulates human monocytes towards a non-inflammatory phenotype. Acta Biomater 24:35–43. https://doi.org/10.1016/j.actbio.2015.06.003

Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427. https://doi.org/10.1016/j.jhep.2016.02.029

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record