- -

Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-Gavilán, Francisco es_ES
dc.contributor.author Cerqueira, Andreia es_ES
dc.contributor.author Anitua, Eduardo es_ES
dc.contributor.author Tejero, Ricardo es_ES
dc.contributor.author García-Arnáez, Iñaki es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Ozturan, Seda es_ES
dc.contributor.author Izquierdo, Raul es_ES
dc.contributor.author Azkargorta, Mikel es_ES
dc.contributor.author Elortza, Félix es_ES
dc.contributor.author Gurruchaga, Mariló es_ES
dc.contributor.author Goñi, Isabel es_ES
dc.contributor.author Suay, Julio es_ES
dc.date.accessioned 2022-04-05T06:28:12Z
dc.date.available 2022-04-05T06:28:12Z
dc.date.issued 2021-09 es_ES
dc.identifier.issn 0949-8257 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181744
dc.description.abstract [EN] Calcium ions are used in the development of biomaterials for the promotion of coagulation, bone regeneration, and implant osseointegration. Upon implantation, the time-dependent release of calcium ions from titanium implant surfaces modifies the physicochemical characteristics at the implant-tissue interface and thus, the biological responses. The aim of this study is to examine how the dynamics of protein adsorption on these surfaces change over time. Titanium discs with and without Ca were incubated with human serum for 2 min, 180 min, and 960 min. The layer of proteins attached to the surface was characterised using nLC-MS/MS. The adsorption kinetics was different between materials, revealing an increased adsorption of proteins associated with coagulation and immune responses prior to Ca release. Implant-blood contact experiments confirmed the strong coagulatory effect for Ca surfaces. We employed primary human alveolar osteoblasts and THP-1 monocytes to study the osteogenic and inflammatory responses. In agreement with the proteomic results, Ca-enriched surfaces showed a significant initial inflammation that disappeared once the calcium was released. The distinct protein adsorption/desorption dynamics found in this work demonstrated to be useful to explain the differential biological responses between the titanium and Ca-ion modified implant surfaces. es_ES
dc.description.sponsorship This work was supported by MINECO [MAT2017-86043-R; RTC-2017-6147-1], Generalitat Valenciana [GRISOLIAP/2018/091; APOSTD/2020/036, PROMETEO/2020/069], Universitat Jaume I under [ UJI-B2017-37], the University of the Basque Country under [GIU18/189] and Basque Government under [PRE_2017_2_0044]. The authors would like to thank Raquel Oliver, Jose Ortega and Iraide Escobes for their valuable technical assistance. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof JBIC Journal of Biological Inorganic Chemistry es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Proteomics es_ES
dc.subject Bioinorganic chemistry es_ES
dc.subject Dental implants es_ES
dc.subject Osseointegration es_ES
dc.subject Blood clotting es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00775-021-01886-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F 2020%2F069/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2017-6147-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2020%2F036/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV/EHU//GIU18%2F189/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2017-37/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Romero-Gavilán, F.; Cerqueira, A.; Anitua, E.; Tejero, R.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.... (2021). Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications. JBIC Journal of Biological Inorganic Chemistry. 26(6):1-12. https://doi.org/10.1007/s00775-021-01886-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00775-021-01886-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 34453217 es_ES
dc.identifier.pmcid PMC8437886 es_ES
dc.relation.pasarela S\445236 es_ES
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidad del País Vasco/Euskal Herriko Unibertsitatea es_ES
dc.description.references Ren N, Li J, Qiu J et al (2014) Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small 10:3169–3180. https://doi.org/10.1002/smll.201303391 es_ES
dc.description.references Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci. https://doi.org/10.1007/s10853-017-1010-0 es_ES
dc.description.references Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014 es_ES
dc.description.references Scheraga HA (2004) The thrombin–fibrinogen interaction. Biophys Chem 112:117–130. https://doi.org/10.1016/j.bpc.2004.07.011 es_ES
dc.description.references Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718. https://doi.org/10.1007/s00441-014-1918-5 es_ES
dc.description.references Huang P (2018) Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 47:271–646. https://doi.org/10.1039/c6cs00746e es_ES
dc.description.references Subir C, Masuet-aumatell C, Alonso CR et al (2019) Assessment of dental implants with modified calcium-phosphate surface in a multicenter, prospective, non-interventional study: results up to 50 months of follow-up. J Funct Biomater 10:1–14. https://doi.org/10.3390/jfb10010005 es_ES
dc.description.references De LS, Jansen JA, Bronkhorst EM et al (2020) Stabilizing dental implants with a fiber-reinforced calcium phosphate cement: an in vitro and in vivo study. Acta Biomater 110:280–288. https://doi.org/10.1016/j.actbio.2020.03.026 es_ES
dc.description.references Doe Y, Ida H, Seiryu M et al (2020) Titanium surface treatment by calcium modification with acid-etching promotes osteogenic activity and stability of dental implants. Materialia 12:100801. https://doi.org/10.1016/j.mtla.2020.100801 es_ES
dc.description.references Anitua E, Piñas L, Murias A et al (2015) Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces 130:173–181. https://doi.org/10.1016/j.colsurfb.2015.04.006 es_ES
dc.description.references Anitua E, Prado R, Orive G, Tejero R (2015) Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res Part A 103:969–980. https://doi.org/10.1002/jbm.a.35240 es_ES
dc.description.references Romero-Gavilán F, Araújo-Gomes N, Cerqueira A et al (2019) Proteomic analysis of calcium-enriched sol–gel biomaterials. J Biol Inorg Chem 24:563–574. https://doi.org/10.1007/s00775-019-01662-5 es_ES
dc.description.references Kim J (2020) Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf B Biointerfaces 188:110756. https://doi.org/10.1016/j.colsurfb.2019.110756 es_ES
dc.description.references Kubiak-Ossowska K, Jachimska B, Al Qaraghuli M, Mulheran PA (2019) Protein interactions with negatively charged inorganic surfaces. Curr Opin Colloid Interface Sci 41:104–117. https://doi.org/10.1016/j.cocis.2019.02.001 es_ES
dc.description.references Siow KS, Britcher L, Kumar S, Griesser HJ (2019) QCM-D and XPS study of protein adsorption on plasma polymers with sulfonate and phosphonate surface groups. Colloids Surf B Biointerfaces 173:447–453. https://doi.org/10.1016/j.colsurfb.2018.10.015 es_ES
dc.description.references Holmberg M, Stibius KB, Larsen NB, Hou X (2008) Competitive protein adsorption to polymer surfaces from human serum. J Mater Sci Mater Med 19:2179–2185. https://doi.org/10.1007/s10856-007-3318-9 es_ES
dc.description.references Ratner BD, Horbett TA (2013) Chapter II.3.5—Evaluation of blood–materials interactions. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JEBT-BS (eds) Biomaterials Science, 3rd edn. Academic Press, Massachusetts es_ES
dc.description.references Brash JL, Horbett TA, Latour RA, Tengvall P (2019) The blood compatibility challenge. Part 2: protein adsorption phenomena governing blood reactivity. Acta Biomater 94:11–24. https://doi.org/10.1016/j.actbio.2019.06.022 es_ES
dc.description.references Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039 es_ES
dc.description.references Othman Z, Cillero Pastor B, van Rijt S, Habibovic P (2018) Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 167:191–204. https://doi.org/10.1016/j.biomaterials.2018.03.020 es_ES
dc.description.references Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime ? Trends Immunol 28:184–192. https://doi.org/10.1016/j.it.2007.02.006 es_ES
dc.description.references Hiraguchi Y, Nagahashi K, Shibayama T et al (2014) Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers. Acta Biomater 10:2988–2995. https://doi.org/10.1016/j.actbio.2014.03.019 es_ES
dc.description.references Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689. https://doi.org/10.1080/08927014.2017.1356289 es_ES
dc.description.references Silva-Bermudez P, Rodil SE (2013) An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol 233:147–158. https://doi.org/10.1016/j.surfcoat.2013.04.028 es_ES
dc.description.references Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111. https://doi.org/10.1080/08927014.2016.1259414 es_ES
dc.description.references Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:377–362. https://doi.org/10.1038/nmeth.1322 es_ES
dc.description.references Anitua E, Tejero R, Zalduendo MM, Orive G (2013) Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol 84:1180–1190. https://doi.org/10.1902/jop.2012.120292 es_ES
dc.description.references Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:23–30. https://doi.org/10.2215/CJN.05910809 es_ES
dc.description.references Gomes NA, Gavilán FR, Zhang Y et al (2019) Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surf B Biointerfaces 181:125–133. https://doi.org/10.1016/j.colsurfb.2019.05.039 es_ES
dc.description.references Chen H, Yuan L, Song W et al (2008) Biocompatible polymer materials: role of protein-surface interactions. Prog Polym Sci 33:1059–1087. https://doi.org/10.1016/j.progpolymsci.2008.07.006 es_ES
dc.description.references Kalathottukaren MT, Kizhakkedathu JN (2018) Mechanisms of blood coagulation in response to biomaterials: extrinsic factors. In: Siedlecki CA (ed) Hemocompatibility of biomaterials for clinical applications. Blood–biomaterials interactions. Woodhead Publishing, pp 29–49 es_ES
dc.description.references Acquasaliente L, Pelc LA, Di Cera E (2019) Probing prothrombin structure by limited proteolysis. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-42524-z es_ES
dc.description.references Sánchez J, Elgue G, Riesenfeld J, Olsson P (1997) Inhibition of the plasma contact activation system of immobilized heparin: relation to surface density of functional antithrombin binding sites. J Biomed Mater Res 37:37–42. https://doi.org/10.1002/(SICI)1097-4636(199710)37:1%3c37::AID-JBM5%3e3.0.CO;2-K es_ES
dc.description.references Cho J, Mosher DF (2006) Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–1469. https://doi.org/10.1111/j.1538-7836.2006.01943.x es_ES
dc.description.references Tejero R, Rossbach P, Keller B et al (2013) Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir 29:902–912. https://doi.org/10.1021/la303360f es_ES
dc.description.references Sánchez-Ilárduya MB, Trouche E, Tejero R et al (2013) Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res Part A 101:1478–1488. https://doi.org/10.1002/jbm.a.34428 es_ES
dc.description.references Hong J, Azens A, Ekdahl KN et al (2005) Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials 26:1397–1403. https://doi.org/10.1016/j.biomaterials.2004.05.036 es_ES
dc.description.references Barradas AMC, Fernandes HAM, Groen N et al (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33:3205–3215. https://doi.org/10.1016/j.biomaterials.2012.01.020 es_ES
dc.description.references Kanaya S, Nemoto E, Ebe Y et al (2010) Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts. Bone 47:564–572. https://doi.org/10.1016/j.bone.2010.05.042 es_ES
dc.description.references Won S, Huh YH, Cho LR et al (2017) Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regen Med 14:123–131. https://doi.org/10.1007/s13770-017-0028-3 es_ES
dc.description.references Ma Y, Zhou Y, Wu F et al (2018) The bidirectional interactions between inflammation and coagulation in fracture hematoma. Tissue Eng Part B Rev 25:46–54. https://doi.org/10.1089/ten.teb.2018.0157 es_ES
dc.description.references Battiston KG, Ouyang B, Honarparvar E et al (2015) Interaction of a block-co-polymeric biomaterial with immunoglobulin G modulates human monocytes towards a non-inflammatory phenotype. Acta Biomater 24:35–43. https://doi.org/10.1016/j.actbio.2015.06.003 es_ES
dc.description.references Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427. https://doi.org/10.1016/j.jhep.2016.02.029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem