- -

Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol

Mostrar el registro completo del ítem

Sogut, E.; Seydim, AC.; Chiralt Boix, MA. (2021). Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol. Journal of Polymer Research. 28(8):1-10. https://doi.org/10.1007/s10965-021-02685-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181749

Ficheros en el ítem

Metadatos del ítem

Título: Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol
Autor: Sogut, Ece Seydim, Atif Can Chiralt Boix, Mª Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Chitosan (CH) bilayer films were obtained by casting polycaprolactone (PCL) or cycloolefin copolymer (COC) onto the CH film surface. Active components, such as grape seed extract (GSE, 5%, w/w) and carvacrol (CV, 10%, ...[+]
Palabras clave: Chitosan , Cycloolefin copolymer , Polycaprolactone , Grape seed extract , Carvacrol , Bilayer film
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Polymer Research. (issn: 1022-9760 )
DOI: 10.1007/s10965-021-02685-w
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10965-021-02685-w
Código del Proyecto:
info:eu-repo/grantAgreement/SDÜ//OYP-5273-DR-12/
info:eu-repo/grantAgreement/SDÜ//OYP-4914-D2-17/
Agradecimientos:
This study was supported by and conducted at laboratories in the Institute of Food Engineering for Development, Universitat Politecnica de Valencia. A part of this study was supported by Suleyman Demirel University Scientific ...[+]
Tipo: Artículo

References

Farris S, Introzzi L, Biagioni P et al (2011) Wetting of biopolymer coatings: Contact angle kinetics and image analysis investigation. Langmuir 27:7563–7574

Hong SI, Lee JW, Son SM (2005) Properties of polysaccharide-coated polypropylene films as affected by biopolymer and plasticizer types. Packag Technol Sci 18:1–9

Ferreira AS, Nunes C, Castro A et al (2014) Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr Polym 113:490–499 [+]
Farris S, Introzzi L, Biagioni P et al (2011) Wetting of biopolymer coatings: Contact angle kinetics and image analysis investigation. Langmuir 27:7563–7574

Hong SI, Lee JW, Son SM (2005) Properties of polysaccharide-coated polypropylene films as affected by biopolymer and plasticizer types. Packag Technol Sci 18:1–9

Ferreira AS, Nunes C, Castro A et al (2014) Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr Polym 113:490–499

Bonilla J, Poloni T, Lourenço RV, Sobral PJA (2018) Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Biosci 23:107–114

Haghighi H, Licciardello F, Fava P et al (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26:100551

Lago WSR, Aymes-Chodur C, Ahoussou AP, Yagoubi N (2017) Physico-chemical ageing of ethylene–norbornene copolymers: a review. J Mater Sci 52:6879–6904

Sharmin N, Khan RA, Salmieri S et al (2012) Fabrication and Characterization of Biodegradable Composite Films Made of Using Poly(caprolactone) Reinforced with Chitosan. J Polym Environ 20:698–705

Joseph CS, Prashanth KVH, Rastogi NK et al (2011) Optimum blend of chitosan and poly-($ε$-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4:1179–1185

Alix S, Mahieu A, Terrie C et al (2013) Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. In: Eur Polym J 1234–1242

Durmus A, Alanalp MB, Aydin I (2018) Investigation of morphological, rheological, and mechanical properties of cyclic olefin copolymer/poly (ethylene-co-vinyl acetate) blend films. J Plast Film Sheeting 34:140–159

Gopanna A, Mandapati RN, Thomas SP et al (2019) Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polym Bull 76:4259–4274

Janjua S, Hussain Z, Khan Z et al (2020) Biopolymer blended films of poly (butylene succinate)/cyclic olefin copolymer with enhanced mechanical strength for packaging applications. J Appl Polym Sci 50081

Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydr Polym 127:282–290

Gartner H, Li Y, Almenar E (2015) Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development. Appl Surf Sci 332:488–493

El Bourakadi K, Merghoub N, Fardioui M et al (2019) Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Compos Part B Eng 172:103–110

Cazon P, Vazquez M (2020) Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environ Chem Lett 18:257–267

Furiga A, Lonvaud-Funel A, Badet C (2009) In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem 113:1037–1040

Farhadi K, Esmaeilzadeh F, Hatami M et al (2016) Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province. Iran Food Chem 199:847–855

de Souza AG, Dos Santos NMA, da Silva Torin RF, dos Santos RD (2020) Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol 164:1737–1747

Sun X, Cameron RG, Bai J (2020) Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll 100:105420

Choi JG, Kang OH, Lee YS et al (2009) Antibacterial activity of methyl gallate isolated from galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14:1773–1780

Tampau A, González-Martínez C, Chiralt A (2018) Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll 79:158–169. https://doi.org/10.1016/j.foodhyd.2017.12.021

Peleg M (1988) An Empirical Model for the Description of Moisture Sorption Curves. J Food Sci 53:1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x

Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276

E96/E96M‐16 A (2016) Standard test methods for water vapor transmission of materials. Annu B ASTM Stand Am Soc Test Mater West Conshohocken, PA, USA 719–725

ASTM (2012) ASTM D882–12: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annu B ASTM Stand 14:1–11

Ortega-Toro R, Collazo-Bigliardi S, Talens P, Chiralt A (2016) Influence of citric acid on the properties and stability of starch-polycaprolactone based films. J Appl Polym Sci 133

ASTM D523–14 (2014) Standard Test Method for Specular Gloss. Annu B Am Stand Test Methods

Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117

Von Bahr M, Tiberg F, Zhmud BV (1999) Spreading dynamics of surfactant solutions. Langmuir 15:7069–7075

Modaressi H, Garnier G (2002) Mechanism of wetting and absorption of water droplets on sized paper: Effects of chemical and physical heterogeneity. Langmuir 18:642–649

Karbowiak T, Debeaufort F, Champion D, Voilley A (2006) Wetting properties at the surface of iota-carrageenan-based edible films. J Colloid Interface Sci 294:400–410

Kokoszka S, Debeaufort F, Hambleton A et al (2010) Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innov Food Sci Emerg Technol 11:503–510

Zhu J-Y, Tang C-H, Yin S-W, Yang X-Q (2018) Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr Polym 181:727–735

Scaffaro R, Maio A, Gulino FE et al (2020) Bilayer biodegradable films prepared by co-extrusion film blowing: Mechanical performance, release kinetics of an antimicrobial agent and hydrolytic degradation. Compos Part A Appl Sci Manuf 132:105836

Luís Â, Gallardo E, Ramos A, Domingues F (2020) Design and characterization of bioactive bilayer films: Release kinetics of isopropyl palmitate. Antibiotics 9:443

Bharathi SKV, Leena MM, Moses JA, Anandharamakrishnan C (2020) Nanofibre-based bilayer biopolymer films: enhancement of antioxidant activity and potential for food packaging application. Int J Food Sci Technol 55:1477–1484

Syafiq R, Sapuan SM, Zuhri MYM et al (2020) Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers (Basel) 12:2403

Pereda M, Amica G, Marcovich NE (2012) Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 87:1318–1325

Zhou X, Yang R, Wang B, Chen K (2019) Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr Polym 222:114912

Ding J, Zhang R, Ahmed S et al (2019) Effect of Sonication Duration in the Performance of Polyvinyl Alcohol/Chitosan Bilayer Films and Their Effect on Strawberry Preservation. Molecules 24:1408

Sogut E, Seydim AC (2018) Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.04.071

Haghighi H, De Leo R, Bedin E et al (2019) Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packag Shelf Life 19:31–39

Adilah AN, Noranizan MA, Jamilah B, Hanani ZAN (2020) Development of polyethylene films coated with gelatin and mango peel extract and the effect on the quality of margarine. Food Packag Shelf Life 26:100577

Chen H, Hu X, Chen E et al (2016) Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll 61:662–671

Velickova E, Winkelhausen E, Kuzmanova S et al (2015) Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci Technol Int 21:83–93

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem