- -

A new interval prediction methodology for short-term electric load forecasting based on pattern recognition

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A new interval prediction methodology for short-term electric load forecasting based on pattern recognition

Show full item record

Serrano-Guerrero, X.; Briceño-León, M.; Clairand, J.; Escrivá-Escrivá, G. (2021). A new interval prediction methodology for short-term electric load forecasting based on pattern recognition. Applied Energy. 297:1-13. https://doi.org/10.1016/j.apenergy.2021.117173

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182139

Files in this item

Item Metadata

Title: A new interval prediction methodology for short-term electric load forecasting based on pattern recognition
Author: Serrano-Guerrero, Xavier Briceño-León, Marco Clairand, Jean-Michel Escrivá-Escrivá, Guillermo
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Issued date:
Abstract:
[EN] Demand prediction has been playing an increasingly important role for electricity management, and is fundamental to the corresponding decision-making. Due to the high variability of the increasing electrical load, and ...[+]
Subjects: Electricity demand , Pattern recognition , Prediction intervals , Short-term forecasting
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied Energy. (issn: 0306-2619 )
DOI: 10.1016/j.apenergy.2021.117173
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.apenergy.2021.117173
Project ID:
info:eu-repo/grantAgreement/Universidad de las Américas, Ecuador//IEA.JCG.20.01//Advanced control strategies and management in a microgrid/energy hub/
Type: Artículo

recommendations

 

recommendations

 

This item appears in the following Collection(s)

Show full item record