- -

A new interval prediction methodology for short-term electric load forecasting based on pattern recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new interval prediction methodology for short-term electric load forecasting based on pattern recognition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano-Guerrero, Xavier es_ES
dc.contributor.author Briceño-León, Marco es_ES
dc.contributor.author Clairand, Jean-Michel es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.date.accessioned 2022-04-27T06:28:05Z
dc.date.available 2022-04-27T06:28:05Z
dc.date.issued 2021-09-01 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182139
dc.description.abstract [EN] Demand prediction has been playing an increasingly important role for electricity management, and is fundamental to the corresponding decision-making. Due to the high variability of the increasing electrical load, and of the new renewable energy technologies, power systems are facing technical challenges. Thus, short-term forecasting has crucial utility for generating dispatching commands, managing the spot market, and detecting anomalies. The techniques associated with machine learning are those currently preferred by researchers for making predictions. However, there are concerns regarding limiting the uncertainty of the obtained results. In this work, a statistical methodology with a simple implementation is presented for obtaining a prediction interval with a time horizon of seven days (15-min time steps), thereby limiting the uncertainty. The methodology is based on pattern recognition and inferential statistics. The predictions made differ from those from a classical approach which predicts point values by trying to minimize the error. In this study, 96 intervals of absorbed active power are predicted for each day, one for every 15 min, along with a previously defined probability associated with the real values being within each obtained interval. To validate the effectiveness of the predictions, the results are compared with those from techniques with the best recent results, such as artificial neural network (ANN) long short-term memory (LSTM) models. A case study in Ecuador is analyzed, resulting in a prediction interval coverage probability (PICP) of 81.1% and prediction interval normalized average width (PINAW) of 10.13%, with a confidence interval of 80%. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electricity demand es_ES
dc.subject Pattern recognition es_ES
dc.subject Prediction intervals es_ES
dc.subject Short-term forecasting es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title A new interval prediction methodology for short-term electric load forecasting based on pattern recognition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2021.117173 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad de las Américas, Ecuador//IEA.JCG.20.01//Advanced control strategies and management in a microgrid/energy hub/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Serrano-Guerrero, X.; Briceño-León, M.; Clairand, J.; Escrivá-Escrivá, G. (2021). A new interval prediction methodology for short-term electric load forecasting based on pattern recognition. Applied Energy. 297:1-13. https://doi.org/10.1016/j.apenergy.2021.117173 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2021.117173 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 297 es_ES
dc.relation.pasarela S\459829 es_ES
dc.contributor.funder Universidad de las Américas, Ecuador es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem