Lorentz, H. A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. (Columbia University Press, New York, 1909).
Hau, L. V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).
Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90, 113903 (2003).
[+]
Lorentz, H. A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. (Columbia University Press, New York, 1909).
Hau, L. V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).
Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90, 113903 (2003).
Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003).
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).
Joannopoulos, J. D. et al. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton University Press, Princeton, NJ, USA, 2008).
Vlasov, Y. A. et al. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).
Krauss, T. F. Why do we need slow light? Nat. Photonics 2, 448–450 (2008).
Baba, T. Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008).
Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007).
Noda, S. et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).
Beggs, D. M. et al. Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33, 147–149 (2008).
Lee, M. R. & Fauchet, P. M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15, 4530–4535 (2007).
Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017).
Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).
Centini, M. et al. Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. Phys. Rev. E 60, 4891–4898 (1999).
Scalora, M. et al. Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss. Phys. Rev. E 54, R1078–R11081 (1996).
Yun, T. Y. & Chang, K. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans. Microw. Theory Tech. 49, 549–553 (2001).
Hopman, W. C. L. et al. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005).
Hwang, R. B. Negative group velocity and anomalous transmission in a one-dimensionally periodic waveguide. IEEE Trans. Antennas Propag. 54, 755–760 (2006).
Gnan, M. et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008).
Ma, Y. M. et al. Mid-infrared slow light engineering and tuning in 1-D grating waveguide. IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018).
Sabek, J. et al. Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures. Beilstein J. Nanotechnol. 10, 967–974 (2019).
Mathias, P. C., Ganesh, N. & Cunningham, B. T. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay. Anal. Chem. 80, 9013–9020 (2008).
Treyz, G. V., May, P. G. & Halbout, J. M. Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59, 771–773 (1991).
Heideman, R. G., Kooyman, R. P. H. & Greve, J. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sens. Actuators B Chem. 10, 209–217 (1993).
Liao, L. et al. High speed silicon Mach-Zehnder modulator. Opt. Express 13, 3129–3135 (2005).
Green, W. M. J. et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007).
Prieto, F. et al. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14, 907–912 (2003).
Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 8, 229–233 (2014).
Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9, 525–528 (2015).
Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017).
Gao, Y. K. et al. Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5, 9836–9844 (2011).
Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).
Sorger, V. J. et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Shaw, N. et al. Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators. Electron. Lett. 35, 1557–1558 (1999).
Camargo, E. A., Chong, H. M. H. & De La Rue, R. M. Highly compact asymmetric Mach-Zehnder device based on channel guides in a two-dimensional photonic crystal. Appl. Opt. 45, 6507–6510 (2006).
Brosi, J. M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).
Tanabe, T. et al. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express 17, 22505–22513 (2009).
Chong, H. M. H. & De La Rue, R. M. Tuning of photonic crystal waveguide microcavity by thermooptic effect. IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
Geis, M. W. et al. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
Brimont, A. et al. High speed silicon electro-optical modulators enhanced via slow light propagation. Opt. Express 19, 20876–20885 (2011).
Qin, K. et al. Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. Opt. Lett. 41, 753–756 (2016).
Zinoviev, K. E. et al. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightwave Technol. 29, 1926–1930 (2011).
Duval, D. et al. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip 12, 1987–1994 (2012).
Torrijos-Morán, L. & García-Rupérez, J. Single-channel bimodal interferometric sensor using subwavelength structures. Opt. Express 27, 8168–8179 (2019).
Torrijos-Morán, L., Griol, A. & García-Rupérez, J. Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors. Opt. Lett. 44, 4702–4705 (2019).
Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).
Olivier, S. et al. Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal. Phys. Rev. B 63, 113311 (2001).
García-Rupérez, J. et al. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Opt. Express 18, 24276–24286 (2010).
Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).
Reed, G. T. et al. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010).
Liu, Q. et al. Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 188, 681–688 (2013).
[-]