- -

Slow light bimodal interferometry in one-dimensional photonic crystal waveguides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Slow light bimodal interferometry in one-dimensional photonic crystal waveguides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torrijos-Morán, Luis es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2022-04-27T09:54:02Z
dc.date.available 2022-04-27T09:54:02Z
dc.date.issued 2021-01-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182173
dc.description.abstract [EN] Strongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor. es_ES
dc.description.sponsorship The authors acknowledge funding from the Generalitat Valenciana through the AVANTI/2019/123, ACIF/2019/009 and PPC/2020/037 grants and from the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014-2020. We also thank Pablo Sanchis and Irene Olivares for their helpful discussions and assistance es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Light: Science & Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Slow light es_ES
dc.subject Bimodal waveguides es_ES
dc.subject Photonic crystals es_ES
dc.subject Single-channel interferometers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Slow light bimodal interferometry in one-dimensional photonic crystal waveguides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41377-020-00460-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//FEDER2014-2020// European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014-2020./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2019%2F009//AYUDA PREDOCTORAL GVA-TORRIJOS MORAN. PROYECTO: DESARROLLO DE SENSORES FOTONICOS INTERFEROMETRICOS DE ALTA SENSIBILIDAD BASADOS EN ESTRUCTURAS PERIODICAS BIMODALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PPC%2F2020%2F037//INCORPORACIÓN DE NUEVAS TECNOLOGÍAS / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Torrijos-Morán, L.; Griol Barres, A.; García-Rupérez, J. (2021). Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light: Science & Applications. 10(1):16.1-16.12. https://doi.org/10.1038/s41377-020-00460-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41377-020-00460-y es_ES
dc.description.upvformatpinicio 16.1 es_ES
dc.description.upvformatpfin 16.12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2047-7538 es_ES
dc.identifier.pmid 33446632 es_ES
dc.identifier.pmcid PMC7809049 es_ES
dc.relation.pasarela S\425667 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Lorentz, H. A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. (Columbia University Press, New York, 1909). es_ES
dc.description.references Hau, L. V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999). es_ES
dc.description.references Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90, 113903 (2003). es_ES
dc.description.references Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003). es_ES
dc.description.references Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). es_ES
dc.description.references Joannopoulos, J. D. et al. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton University Press, Princeton, NJ, USA, 2008). es_ES
dc.description.references Vlasov, Y. A. et al. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005). es_ES
dc.description.references Krauss, T. F. Why do we need slow light? Nat. Photonics 2, 448–450 (2008). es_ES
dc.description.references Baba, T. Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008). es_ES
dc.description.references Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007). es_ES
dc.description.references Noda, S. et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000). es_ES
dc.description.references Beggs, D. M. et al. Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33, 147–149 (2008). es_ES
dc.description.references Lee, M. R. & Fauchet, P. M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15, 4530–4535 (2007). es_ES
dc.description.references Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017). es_ES
dc.description.references Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010). es_ES
dc.description.references Centini, M. et al. Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. Phys. Rev. E 60, 4891–4898 (1999). es_ES
dc.description.references Scalora, M. et al. Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss. Phys. Rev. E 54, R1078–R11081 (1996). es_ES
dc.description.references Yun, T. Y. & Chang, K. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans. Microw. Theory Tech. 49, 549–553 (2001). es_ES
dc.description.references Hopman, W. C. L. et al. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005). es_ES
dc.description.references Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005). es_ES
dc.description.references Hwang, R. B. Negative group velocity and anomalous transmission in a one-dimensionally periodic waveguide. IEEE Trans. Antennas Propag. 54, 755–760 (2006). es_ES
dc.description.references Gnan, M. et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008). es_ES
dc.description.references Ma, Y. M. et al. Mid-infrared slow light engineering and tuning in 1-D grating waveguide. IEEE J. Sel. Top. Quantum Electron. 24, 6101608 (2018). es_ES
dc.description.references Sabek, J. et al. Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures. Beilstein J. Nanotechnol. 10, 967–974 (2019). es_ES
dc.description.references Mathias, P. C., Ganesh, N. & Cunningham, B. T. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay. Anal. Chem. 80, 9013–9020 (2008). es_ES
dc.description.references Treyz, G. V., May, P. G. & Halbout, J. M. Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59, 771–773 (1991). es_ES
dc.description.references Heideman, R. G., Kooyman, R. P. H. & Greve, J. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sens. Actuators B Chem. 10, 209–217 (1993). es_ES
dc.description.references Liao, L. et al. High speed silicon Mach-Zehnder modulator. Opt. Express 13, 3129–3135 (2005). es_ES
dc.description.references Green, W. M. J. et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007). es_ES
dc.description.references Prieto, F. et al. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14, 907–912 (2003). es_ES
dc.description.references Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 8, 229–233 (2014). es_ES
dc.description.references Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9, 525–528 (2015). es_ES
dc.description.references Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017). es_ES
dc.description.references Gao, Y. K. et al. Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5, 9836–9844 (2011). es_ES
dc.description.references Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). es_ES
dc.description.references Sorger, V. J. et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012). es_ES
dc.description.references Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). es_ES
dc.description.references Shaw, N. et al. Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators. Electron. Lett. 35, 1557–1558 (1999). es_ES
dc.description.references Camargo, E. A., Chong, H. M. H. & De La Rue, R. M. Highly compact asymmetric Mach-Zehnder device based on channel guides in a two-dimensional photonic crystal. Appl. Opt. 45, 6507–6510 (2006). es_ES
dc.description.references Brosi, J. M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008). es_ES
dc.description.references Tanabe, T. et al. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express 17, 22505–22513 (2009). es_ES
dc.description.references Chong, H. M. H. & De La Rue, R. M. Tuning of photonic crystal waveguide microcavity by thermooptic effect. IEEE Photon. Technol. Lett. 16, 1528–1530 (2004). es_ES
dc.description.references Geis, M. W. et al. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photon. Technol. Lett. 16, 2514–2516 (2004). es_ES
dc.description.references Brimont, A. et al. High speed silicon electro-optical modulators enhanced via slow light propagation. Opt. Express 19, 20876–20885 (2011). es_ES
dc.description.references Qin, K. et al. Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. Opt. Lett. 41, 753–756 (2016). es_ES
dc.description.references Zinoviev, K. E. et al. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightwave Technol. 29, 1926–1930 (2011). es_ES
dc.description.references Duval, D. et al. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip 12, 1987–1994 (2012). es_ES
dc.description.references Torrijos-Morán, L. & García-Rupérez, J. Single-channel bimodal interferometric sensor using subwavelength structures. Opt. Express 27, 8168–8179 (2019). es_ES
dc.description.references Torrijos-Morán, L., Griol, A. & García-Rupérez, J. Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors. Opt. Lett. 44, 4702–4705 (2019). es_ES
dc.description.references Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001). es_ES
dc.description.references Olivier, S. et al. Mini-stopbands of a one-dimensional system: the channel waveguide in a two-dimensional photonic crystal. Phys. Rev. B 63, 113311 (2001). es_ES
dc.description.references García-Rupérez, J. et al. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Opt. Express 18, 24276–24286 (2010). es_ES
dc.description.references Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002). es_ES
dc.description.references Reed, G. T. et al. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010). es_ES
dc.description.references Liu, Q. et al. Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 188, 681–688 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem