- -

Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative

Mostrar el registro completo del ítem

Gupta, DK.; Martínez Molada, E.; Singh, S.; Hueso, JL.; Srivastava, S.; Kumar, A. (2021). Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative. International Journal of Nonlinear Sciences and Numerical Simulation. 22(3-4):267-285. https://doi.org/10.1515/ijnsns-2016-0151

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182191

Ficheros en el ítem

Metadatos del ítem

Título: Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative
Autor: Gupta, Dharmendra Kumar Martínez Molada, Eulalia Singh, Sukhjit Hueso, Jose Luis Srivastava, Shwetabh Kumar, Abhimanyu
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The semilocal convergence using recurrence relations of a family of iterations for solving nonlinear equations in Banach spaces is established. It is done under the assumption that the second order Frechet derivative ...[+]
Palabras clave: Dynamical systems , Hammerstein integral equation , Holder condition , Lipschitz condition , Semilocal convergence
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Nonlinear Sciences and Numerical Simulation. (issn: 1565-1339 )
DOI: 10.1515/ijnsns-2016-0151
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/ijnsns-2016-0151
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Tipo: Artículo

References

I. K. Argyros and S. Hilout, Numerical Methods in Nonlinear Analysis, New Jersey, World Scientific Publ. Comp., 2013.

I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, New York, Nova Publishers, 2011.

J. F. Traub, Iterative Methods for the Solution of Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1964. [+]
I. K. Argyros and S. Hilout, Numerical Methods in Nonlinear Analysis, New Jersey, World Scientific Publ. Comp., 2013.

I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, New York, Nova Publishers, 2011.

J. F. Traub, Iterative Methods for the Solution of Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1964.

L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, Ed., New York, Krieger Publishing Company, 1979.

A. Cordero, J. A. Ezquerro, M. A. Hernández, and J. R. Torregrosa, “On the local convergence of a fifth-order iterative method in Banach spaces,” Appl. Math. Comput., vol. 251, pp. 396–403, 2015. https://doi.org/10.1016/j.amc.2014.11.084.

I. K. Argyros and S. K. Khattri, “Local convergence for a family of third order methods in Banach spaces,” J. Math., vol. 46, pp. 53–62, 2014.

I. K. Argyros and A. S. Hilout, “On the local convergence of fast two-step Newton-like methods for solving nonlinear equations,” J. Comput. Appl. Math., vol. 245, pp. 1–9, 2013. https://doi.org/10.1016/j.cam.2012.12.002.

I. K. Argyros, S. George, and A. A. Magreñán, “Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order,” J. Comput. Appl. Math., vol. 282, pp. 215–224, 2015. https://doi.org/10.1016/j.cam.2014.12.023.

I. K. Argyros and A. A. Magreñán, “A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative,” Numer. Algorithm., vol. 71, pp. 1–23, 2016. https://doi.org/10.1007/s11075-015-9981-x.

J. L. Hueso and E. Martínez, “Semilocal convergence of a family of iterative methods in Banach spaces,” Numer. Algorithm., vol. 67, pp. 365–384, 2014. https://doi.org/10.1007/s11075-013-9795-7.

M. A. Hernández, “Chebyshev’s approximation algorithms and applications,” Comput. Math. Appl., vol. 41, pp. 433–445, 2001. https://doi.org/10.1016/s0898-1221(00)00286-8.

I. K. Argyros, J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and S. Hilout, “On the semilocal convergence of efficient Chebyshev–Secant-type methods,” J. Comput. Appl. Math., vol. 235, pp. 3195–3206, 2011. https://doi.org/10.1016/j.cam.2011.01.005.

S. Amat, M. A. Hernández, and N. Romero, “A modified Chebyshev’s iterative method with at least sixth order of convergence,” Appl. Math. Comput., vol. 206, pp. 164–174, 2008. https://doi.org/10.1016/j.amc.2008.08.050.

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Oxford, Pergamon Press, 1982.

Y. Zhao and Q. Wu, “Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space,” Appl. Math. Comput., vol. 202, pp. 243–251, 2008. https://doi.org/10.1016/j.amc.2008.02.004.

P. K. Parida and D. K. Gupta, “Recurrence relations for a Newton-like method in Banach spaces,” J. Comput. Appl. Math., vol. 206, pp. 873–887, 2007. https://doi.org/10.1016/j.cam.2006.08.027.

P. K. Parida and D. K. Gupta, “Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces,” J. Math. Anal. Appl., vol. 345, pp. 350–361, 2008. https://doi.org/10.1016/j.jmaa.2008.03.064.

Q. Wu and Y. Zhao, “Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method,” Appl. Math. Comput., vol. 192, pp. 405–412, 2008. https://doi.org/10.1016/j.amc.2007.03.018.

X. Wang, J. Kou, and C. Gu, “Semilocal convergence of a class of modified super-Halley methods in Banach spaces,” J. Optim. Theor. Appl., vol. 153, pp. 779–793, 2012. https://doi.org/10.1007/s10957-012-9985-9.

A. Cordero, J. R. Torregrosa, and P. Vindel, “Study of the dynamics of third-order iterative methods on quadratic polynomials,” Int. J. Comput. Math., vol. 89, pp. 1826–1836, 2012. https://doi.org/10.1080/00207160.2012.687446.

G. Honorato, S. Plaza, and N. Romero, “Dynamics of a higher-order family of iterative methods,” J. Complex, vol. 27, pp. 221–229, 2011. https://doi.org/10.1016/j.jco.2010.10.005.

J. M. Gutirrez, M. A. Hernndez, and N. Romero, “Dynamics of a new family of iterative processes for quadratic polynomials,” J. Comput. Appl. Math., vol. 233, pp. 2688–2695, 2010. https://doi.org/10.1016/j.cam.2009.11.017.

S. Plaza and N. Romero, “Attracting cycles for the relaxed Newton’s method,” J. Comput. Appl. Math., vol. 235, pp. 3238–3244, 2011. https://doi.org/10.1016/j.cam.2011.01.010.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem