Mostrar el registro sencillo del ítem
dc.contributor.author | Gupta, Dharmendra Kumar | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.contributor.author | Hueso, Jose Luis | es_ES |
dc.contributor.author | Srivastava, Shwetabh | es_ES |
dc.contributor.author | Kumar, Abhimanyu | es_ES |
dc.date.accessioned | 2022-04-27T10:07:21Z | |
dc.date.available | 2022-04-27T10:07:21Z | |
dc.date.issued | 2021-06-01 | es_ES |
dc.identifier.issn | 1565-1339 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182191 | |
dc.description.abstract | [EN] The semilocal convergence using recurrence relations of a family of iterations for solving nonlinear equations in Banach spaces is established. It is done under the assumption that the second order Frechet derivative satisfies the Holder continuity condition. This condition is more general than the usual Lipschitz continuity condition used for this purpose. Examples can be given forwhich the Lipschitz continuity condition fails but the Holder continuity condition works on the second order Frechet derivative. Recurrence relations based on three parameters are derived. A theorem for existence and uniqueness along with the error bounds for the solution is provided. The R-order of convergence is shown to be equal to 3 + q when theta = +/- 1; otherwise it is 2 + q, where q epsilon (0, 1]. Numerical examples involving nonlinear integral equations and boundary value problems are solved and improved convergence balls are found for them. Finally, the dynamical study of the family of iterations is also carried out. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.relation.ispartof | International Journal of Nonlinear Sciences and Numerical Simulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dynamical systems | es_ES |
dc.subject | Hammerstein integral equation | es_ES |
dc.subject | Holder condition | es_ES |
dc.subject | Lipschitz condition | es_ES |
dc.subject | Semilocal convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/ijnsns-2016-0151 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Gupta, DK.; Martínez Molada, E.; Singh, S.; Hueso, JL.; Srivastava, S.; Kumar, A. (2021). Recurrence relations for a family of iterations assuming Holder continuous second order Frechet derivative. International Journal of Nonlinear Sciences and Numerical Simulation. 22(3-4):267-285. https://doi.org/10.1515/ijnsns-2016-0151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/ijnsns-2016-0151 | es_ES |
dc.description.upvformatpinicio | 267 | es_ES |
dc.description.upvformatpfin | 285 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 3-4 | es_ES |
dc.relation.pasarela | S\440195 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | I. K. Argyros and S. Hilout, Numerical Methods in Nonlinear Analysis, New Jersey, World Scientific Publ. Comp., 2013. | es_ES |
dc.description.references | I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, New York, Nova Publishers, 2011. | es_ES |
dc.description.references | J. F. Traub, Iterative Methods for the Solution of Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1964. | es_ES |
dc.description.references | L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, Ed., New York, Krieger Publishing Company, 1979. | es_ES |
dc.description.references | A. Cordero, J. A. Ezquerro, M. A. Hernández, and J. R. Torregrosa, “On the local convergence of a fifth-order iterative method in Banach spaces,” Appl. Math. Comput., vol. 251, pp. 396–403, 2015. https://doi.org/10.1016/j.amc.2014.11.084. | es_ES |
dc.description.references | I. K. Argyros and S. K. Khattri, “Local convergence for a family of third order methods in Banach spaces,” J. Math., vol. 46, pp. 53–62, 2014. | es_ES |
dc.description.references | I. K. Argyros and A. S. Hilout, “On the local convergence of fast two-step Newton-like methods for solving nonlinear equations,” J. Comput. Appl. Math., vol. 245, pp. 1–9, 2013. https://doi.org/10.1016/j.cam.2012.12.002. | es_ES |
dc.description.references | I. K. Argyros, S. George, and A. A. Magreñán, “Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order,” J. Comput. Appl. Math., vol. 282, pp. 215–224, 2015. https://doi.org/10.1016/j.cam.2014.12.023. | es_ES |
dc.description.references | I. K. Argyros and A. A. Magreñán, “A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative,” Numer. Algorithm., vol. 71, pp. 1–23, 2016. https://doi.org/10.1007/s11075-015-9981-x. | es_ES |
dc.description.references | J. L. Hueso and E. Martínez, “Semilocal convergence of a family of iterative methods in Banach spaces,” Numer. Algorithm., vol. 67, pp. 365–384, 2014. https://doi.org/10.1007/s11075-013-9795-7. | es_ES |
dc.description.references | M. A. Hernández, “Chebyshev’s approximation algorithms and applications,” Comput. Math. Appl., vol. 41, pp. 433–445, 2001. https://doi.org/10.1016/s0898-1221(00)00286-8. | es_ES |
dc.description.references | I. K. Argyros, J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and S. Hilout, “On the semilocal convergence of efficient Chebyshev–Secant-type methods,” J. Comput. Appl. Math., vol. 235, pp. 3195–3206, 2011. https://doi.org/10.1016/j.cam.2011.01.005. | es_ES |
dc.description.references | S. Amat, M. A. Hernández, and N. Romero, “A modified Chebyshev’s iterative method with at least sixth order of convergence,” Appl. Math. Comput., vol. 206, pp. 164–174, 2008. https://doi.org/10.1016/j.amc.2008.08.050. | es_ES |
dc.description.references | L. V. Kantorovich and G. P. Akilov, Functional Analysis, Oxford, Pergamon Press, 1982. | es_ES |
dc.description.references | Y. Zhao and Q. Wu, “Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space,” Appl. Math. Comput., vol. 202, pp. 243–251, 2008. https://doi.org/10.1016/j.amc.2008.02.004. | es_ES |
dc.description.references | P. K. Parida and D. K. Gupta, “Recurrence relations for a Newton-like method in Banach spaces,” J. Comput. Appl. Math., vol. 206, pp. 873–887, 2007. https://doi.org/10.1016/j.cam.2006.08.027. | es_ES |
dc.description.references | P. K. Parida and D. K. Gupta, “Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces,” J. Math. Anal. Appl., vol. 345, pp. 350–361, 2008. https://doi.org/10.1016/j.jmaa.2008.03.064. | es_ES |
dc.description.references | Q. Wu and Y. Zhao, “Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method,” Appl. Math. Comput., vol. 192, pp. 405–412, 2008. https://doi.org/10.1016/j.amc.2007.03.018. | es_ES |
dc.description.references | X. Wang, J. Kou, and C. Gu, “Semilocal convergence of a class of modified super-Halley methods in Banach spaces,” J. Optim. Theor. Appl., vol. 153, pp. 779–793, 2012. https://doi.org/10.1007/s10957-012-9985-9. | es_ES |
dc.description.references | A. Cordero, J. R. Torregrosa, and P. Vindel, “Study of the dynamics of third-order iterative methods on quadratic polynomials,” Int. J. Comput. Math., vol. 89, pp. 1826–1836, 2012. https://doi.org/10.1080/00207160.2012.687446. | es_ES |
dc.description.references | G. Honorato, S. Plaza, and N. Romero, “Dynamics of a higher-order family of iterative methods,” J. Complex, vol. 27, pp. 221–229, 2011. https://doi.org/10.1016/j.jco.2010.10.005. | es_ES |
dc.description.references | J. M. Gutirrez, M. A. Hernndez, and N. Romero, “Dynamics of a new family of iterative processes for quadratic polynomials,” J. Comput. Appl. Math., vol. 233, pp. 2688–2695, 2010. https://doi.org/10.1016/j.cam.2009.11.017. | es_ES |
dc.description.references | S. Plaza and N. Romero, “Attracting cycles for the relaxed Newton’s method,” J. Comput. Appl. Math., vol. 235, pp. 3238–3244, 2011. https://doi.org/10.1016/j.cam.2011.01.010. | es_ES |