- -

Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chevilly-Tena, Sergio es_ES
dc.contributor.author Dolz-Edo, Laura es_ES
dc.contributor.author Morcillo, Luna es_ES
dc.contributor.author Vilagrosa, Alberto es_ES
dc.contributor.author López-Nicolás, José Manuel es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.date.accessioned 2022-04-29T18:04:06Z
dc.date.available 2022-04-29T18:04:06Z
dc.date.issued 2021-10-25 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182300
dc.description.abstract [EN] Background Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions. Results This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions. Conclusions This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress. es_ES
dc.description.sponsorship This work was funded by Grant RTC-2017-6468-2-AR (APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUiA DEL BROCOLI) funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" by the European Union. S.C. is a recipient of grant FPU19/01977 from the Spanish Ministerio de Universidades. L.M. was supported by the Spanish MICINN (PTA2019-018094). L.M and A.V. activities were founded by Prometeu program (IMAGINA project, PROMETEU/2019/110). CEAM foundation is funded by Generalitat Valenciana. None of the funding bodies has participated in the design of the study or the collection, analysis, interpretation of data, nor in writing the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Salt stress es_ES
dc.subject Broccoli es_ES
dc.subject Molecular markers es_ES
dc.subject Metabolomics es_ES
dc.subject Crop improvement es_ES
dc.subject Krebs Cycle es_ES
dc.subject Amino acids es_ES
dc.subject Anaplerotic reactions es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-021-03263-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PTA2019-018094/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F110/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6468-2-AR//APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUIA DEL BROCOLI/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU19%2F01977//AYUDA PREDOCTORAL FPU-CHEVILLY TENA. PROYECTO: OBTENCIÓN Y CARACTERIZACIÓN DE NUEVAS VARIEDADES BIOTECNOLÓGICAS DE BRÓCOLI TOLERANTES A SALINIDAD Y SEQUÍA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Chevilly-Tena, S.; Dolz-Edo, L.; Morcillo, L.; Vilagrosa, A.; López-Nicolás, JM.; Yenush, L.; Mulet, JM. (2021). Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biology. 21(1):1-16. https://doi.org/10.1186/s12870-021-03263-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-021-03263-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34696731 es_ES
dc.identifier.pmcid PMC8543863 es_ES
dc.relation.pasarela S\448112 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES
dc.description.references Bisbis MB, Gruda N, Blanke M. Potential impacts of climate change on vegetable production and product quality – A review. J Clean Prod. 2018;170:1602–20. https://doi.org/10.1016/j.jclepro.2017.09.224. es_ES
dc.description.references Van Passel S, Massetti E, Mendelsohn R. A Ricardian analysis of the impact of climate change on European Agriculture. Environ Resour Econ. 2017;67:725–60. https://doi.org/10.1007/s10640-016-0001-y. es_ES
dc.description.references IPCC. Climate Change and Land Ice; IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Summary for Policymakers. 2017. es_ES
dc.description.references Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric Ecosyst Environ. 2016;216:356–73. https://doi.org/10.1016/j.agee.2015.09.034. es_ES
dc.description.references Flowers TJ, Colmer TD. Salinity tolerance in halophytes*. New Phytol. 2008;179:945–63. https://doi.org/10.1111/j.1469-8137.2008.02531.x. es_ES
dc.description.references Flowers TJ, Colmer TD. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 2015;115:327–31. https://doi.org/10.1093/aob/mcu267. es_ES
dc.description.references Santos J, Al-Azzawi M, Aronson J, Flowers TJ. EHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant Cell Physiol. 2016;57:e10. https://doi.org/10.1093/pcp/pcv155. es_ES
dc.description.references Bromham L, Hua X, Cardillo M. Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. Plant Cell Environ. 2020. https://doi.org/10.1111/pce.13857. es_ES
dc.description.references Kotula L, Garcia Caparros P, Zörb C, Colmer TD, Flowers TJ. Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant Cell Environ. 2020;43:2932–56. https://doi.org/10.1111/pce.13865. es_ES
dc.description.references Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, et al. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J. 2014;12:378–86. https://doi.org/10.1111/pbi.12145. es_ES
dc.description.references Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 2004;167:849–59. https://doi.org/10.1016/j.plantsci.2004.05.034. es_ES
dc.description.references Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, et al. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot. 1999;50:1023–36 SPEC. ISS. es_ES
dc.description.references Jeffery EH, Araya M. Physiological effects of broccoli consumption. Phytochem Rev. 2009;8:283–98. https://doi.org/10.1007/s11101-008-9106-4. es_ES
dc.description.references Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5–51. https://doi.org/10.1016/S0031-9422(00)00316-2. es_ES
dc.description.references Zinoviadou KG, Galanakis CM. Glucosinolates and respective derivatives (Isothiocyanates) from plants. In: Food bioactives: extraction and biotechnology applications. Springer International Publishing; 2017. p. 3–22. doi:https://doi.org/10.1007/978-3-319-51639-4_1. es_ES
dc.description.references Hanschen FS, Lamy E, Schreiner M, Rohn S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chemie Int Ed. 2014;53:11430–50. https://doi.org/10.1002/anie.201402639. es_ES
dc.description.references Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta Rev Cancer. 1846;2014:405–24. https://doi.org/10.1016/j.bbcan.2014.08.003. es_ES
dc.description.references Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 2010;16:2580–90. https://doi.org/10.1158/1078-0432.CCR-09-2937. es_ES
dc.description.references Shannon MC, Grieve CM. Tolerance of vegetable crops to salinity. Sci Hortic. 1998;78:5–38. https://doi.org/10.1016/S0304-4238(98)00189-7. es_ES
dc.description.references Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50. https://doi.org/10.1046/j.0016-8025.2001.00808.x. es_ES
dc.description.references Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001;13:889–905. https://doi.org/10.1105/tpc.13.4.889. es_ES
dc.description.references Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt stress in brassica: effects, tolerance mechanisms, and management. J Plant Growth Regul. 2021:1–15. https://doi.org/10.1007/s00344-021-10338-x. es_ES
dc.description.references Muries B, Carvajal M, del Martínez-Ballesta MC. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. Planta. 2013;237:1297–310. https://doi.org/10.1007/S00425-013-1849-5. es_ES
dc.description.references López-Berenguer C, Martínez-Ballesta MDC, Moreno DA, Carvajal M, García-Viguera C. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem. 2009;57:572–8. https://doi.org/10.1021/jf802994p. es_ES
dc.description.references Metz TD, Dixit R, Earle ED. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep. 1995;15:287–92. https://doi.org/10.1007/BF00193738. es_ES
dc.description.references Kumar P, Srivastava DK. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol. Lett. 2016;38:1049–63. https://doi.org/10.1007/s10529-016-2080-9. es_ES
dc.description.references Taibi K, Del Campo AD, Vilagrosa A, Belles JM, Lopez-Gresa MP, Pla D, et al. Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01202. es_ES
dc.description.references Taïbi K, Del Campo AD, Vilagrosa A, Bellés JM, López-Gresa MP, López-Nicolás JM, et al. Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol. 2018;18:236. https://doi.org/10.1186/s12870-018-1464-5. es_ES
dc.description.references Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African J Bot. 2016;105:306–12. https://doi.org/10.1016/j.sajb.2016.03.011. es_ES
dc.description.references Souana K, Taïbi K, Ait Abderrahim L, Amirat M, Achir M, Boussaid M, et al. Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Sci Hortic. 2020;273:109641. https://doi.org/10.1016/j.scienta.2020.109641. es_ES
dc.description.references Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast. 2004;21:303–12. https://doi.org/10.1002/yea.1076. es_ES
dc.description.references Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell. 2004;16:2176–91. https://doi.org/10.1105/tpc.104.023036. es_ES
dc.description.references Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. J. Agric. Food Chem. 2020;68:7281–97. https://doi.org/10.1021/acs.jafc.0c01916. es_ES
dc.description.references Liu Y, Rossi M, Liang X, Zhang H, Zou L, Ong CN. An integrated metabolomics study of glucosinolate metabolism in different Brassicaceae genera. Metabolites. 2020;10:313. https://doi.org/10.3390/metabo10080313. es_ES
dc.description.references Podda A, Pollastri S, Bartolini P, Pisuttu C, Pellegrini E, Nali C, et al. Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC) Alef, var. sabellica L. J Sci Food Agric. 2019;99:5533–40. https://doi.org/10.1002/jsfa.9816. es_ES
dc.description.references Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020;25:1117–30. https://doi.org/10.1016/j.tplants.2020.06.008. es_ES
dc.description.references Labudda M, Azam FMS. Glutathione-dependent responses of plants to drought: a review. Acta Soc. Bot. Pol. 2014;83:3–12. es_ES
dc.description.references Pyngrope S, Bhoomika K, Dubey RS. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 2013;250:585–600. https://doi.org/10.1007/s00709-012-0444-0. es_ES
dc.description.references Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, et al. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiol Biochem. 2021;158:53–64. https://doi.org/10.1016/j.plaphy.2020.11.044. es_ES
dc.description.references Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant. 2001;112:487–94. https://doi.org/10.1034/j.1399-3054.2001.1120405.x. es_ES
dc.description.references Khan MH, Panda SK. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant. 2008;30:81–9. https://doi.org/10.1007/s11738-007-0093-7. es_ES
dc.description.references Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem. 2004;42:695–701. es_ES
dc.description.references Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot. 2010;61:521–35. https://doi.org/10.1093/jxb/erp321. es_ES
dc.description.references Groppa MD, Benavides MP. Polyamines and abiotic stress: Recent advances. Amino Acids. 2008;34:35–45. https://doi.org/10.1007/s00726-007-0501-8. es_ES
dc.description.references Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, et al. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1237–49. https://doi.org/10.1007/s00425-010-1130-0. es_ES
dc.description.references Verbruggen N, Hermans C. Proline accumulation in plants: A review. Amino Acids. 2008;35:753–9. https://doi.org/10.1007/s00726-008-0061-6. es_ES
dc.description.references Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, Martnez-Ballesta MDC, Moreno DA, Ferchichi A, et al. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci World J. 2012;2012(291435):12. https://doi.org/10.1100/2012/291435. es_ES
dc.description.references Bandurska H. Free proline accumulation in leaves of cultivated plant species under water deficit conditions. Acta Agrobot. 2013;57:57–67. https://doi.org/10.5586/aa.2004.006. es_ES
dc.description.references Rodríguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta Biomembr. 2000;1469:1–30. https://doi.org/10.1016/S0304-4157(99)00013-1. es_ES
dc.description.references Santa-Cruz A, Acosta M, Rus A, Bolarin MC. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem. 1999;37:65–71. https://doi.org/10.1016/S0981-9428(99)80068-0. es_ES
dc.description.references Sanoubar R, Cellini A, Veroni AM, Spinelli F, Masia A, Vittori Antisari L, et al. Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. J Sci Food Agric. 2016;96:319–30. https://doi.org/10.1002/jsfa.7097. es_ES
dc.description.references Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem. 2005;53:8437–42. https://doi.org/10.1021/jf050884b. es_ES
dc.description.references Gisbert C, Timoneda A, Porcel R, Ros R, Mulet JM. Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy. 2020;10:1754. https://doi.org/10.3390/agronomy10111754. es_ES
dc.description.references Rios G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res. 2012. https://doi.org/10.1111/1567-1364.12013. es_ES
dc.description.references Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000;23:131–42. https://doi.org/10.1046/j.1365-313x.2000.00774.x. es_ES
dc.subject.ods 01.- Erradicar la pobreza en todas sus formas en todo el mundo es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 05.- Alcanzar la igualdad entre los géneros y empoderar a todas las mujeres y niñas es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem