- -

Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

Mostrar el registro completo del ítem

Chevilly-Tena, S.; Dolz-Edo, L.; Morcillo, L.; Vilagrosa, A.; López-Nicolás, JM.; Yenush, L.; Mulet, JM. (2021). Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biology. 21(1):1-16. https://doi.org/10.1186/s12870-021-03263-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182300

Ficheros en el ítem

Metadatos del ítem

Título: Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)
Autor: Chevilly-Tena, Sergio Dolz-Edo, Laura Morcillo, Luna Vilagrosa, Alberto López-Nicolás, José Manuel Yenush, Lynne Mulet, José Miguel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Background Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response ...[+]
Palabras clave: Salt stress , Broccoli , Molecular markers , Metabolomics , Crop improvement , Krebs Cycle , Amino acids , Anaplerotic reactions
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/s12870-021-03263-4
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12870-021-03263-4
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//PTA2019-018094/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F110/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6468-2-AR//APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUIA DEL BROCOLI/
info:eu-repo/grantAgreement/ //FPU19%2F01977//AYUDA PREDOCTORAL FPU-CHEVILLY TENA. PROYECTO: OBTENCIÓN Y CARACTERIZACIÓN DE NUEVAS VARIEDADES BIOTECNOLÓGICAS DE BRÓCOLI TOLERANTES A SALINIDAD Y SEQUÍA./
Agradecimientos:
This work was funded by Grant RTC-2017-6468-2-AR (APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUiA DEL BROCOLI) funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" ...[+]
Tipo: Artículo

References

Bisbis MB, Gruda N, Blanke M. Potential impacts of climate change on vegetable production and product quality – A review. J Clean Prod. 2018;170:1602–20. https://doi.org/10.1016/j.jclepro.2017.09.224.

Van Passel S, Massetti E, Mendelsohn R. A Ricardian analysis of the impact of climate change on European Agriculture. Environ Resour Econ. 2017;67:725–60. https://doi.org/10.1007/s10640-016-0001-y.

IPCC. Climate Change and Land Ice; IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Summary for Policymakers. 2017. [+]
Bisbis MB, Gruda N, Blanke M. Potential impacts of climate change on vegetable production and product quality – A review. J Clean Prod. 2018;170:1602–20. https://doi.org/10.1016/j.jclepro.2017.09.224.

Van Passel S, Massetti E, Mendelsohn R. A Ricardian analysis of the impact of climate change on European Agriculture. Environ Resour Econ. 2017;67:725–60. https://doi.org/10.1007/s10640-016-0001-y.

IPCC. Climate Change and Land Ice; IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Summary for Policymakers. 2017.

Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric Ecosyst Environ. 2016;216:356–73. https://doi.org/10.1016/j.agee.2015.09.034.

Flowers TJ, Colmer TD. Salinity tolerance in halophytes*. New Phytol. 2008;179:945–63. https://doi.org/10.1111/j.1469-8137.2008.02531.x.

Flowers TJ, Colmer TD. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 2015;115:327–31. https://doi.org/10.1093/aob/mcu267.

Santos J, Al-Azzawi M, Aronson J, Flowers TJ. EHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant Cell Physiol. 2016;57:e10. https://doi.org/10.1093/pcp/pcv155.

Bromham L, Hua X, Cardillo M. Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. Plant Cell Environ. 2020. https://doi.org/10.1111/pce.13857.

Kotula L, Garcia Caparros P, Zörb C, Colmer TD, Flowers TJ. Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant Cell Environ. 2020;43:2932–56. https://doi.org/10.1111/pce.13865.

Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, et al. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J. 2014;12:378–86. https://doi.org/10.1111/pbi.12145.

Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 2004;167:849–59. https://doi.org/10.1016/j.plantsci.2004.05.034.

Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, et al. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot. 1999;50:1023–36 SPEC. ISS.

Jeffery EH, Araya M. Physiological effects of broccoli consumption. Phytochem Rev. 2009;8:283–98. https://doi.org/10.1007/s11101-008-9106-4.

Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5–51. https://doi.org/10.1016/S0031-9422(00)00316-2.

Zinoviadou KG, Galanakis CM. Glucosinolates and respective derivatives (Isothiocyanates) from plants. In: Food bioactives: extraction and biotechnology applications. Springer International Publishing; 2017. p. 3–22. doi:https://doi.org/10.1007/978-3-319-51639-4_1.

Hanschen FS, Lamy E, Schreiner M, Rohn S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chemie Int Ed. 2014;53:11430–50. https://doi.org/10.1002/anie.201402639.

Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta Rev Cancer. 1846;2014:405–24. https://doi.org/10.1016/j.bbcan.2014.08.003.

Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 2010;16:2580–90. https://doi.org/10.1158/1078-0432.CCR-09-2937.

Shannon MC, Grieve CM. Tolerance of vegetable crops to salinity. Sci Hortic. 1998;78:5–38. https://doi.org/10.1016/S0304-4238(98)00189-7.

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50. https://doi.org/10.1046/j.0016-8025.2001.00808.x.

Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001;13:889–905. https://doi.org/10.1105/tpc.13.4.889.

Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt stress in brassica: effects, tolerance mechanisms, and management. J Plant Growth Regul. 2021:1–15. https://doi.org/10.1007/s00344-021-10338-x.

Muries B, Carvajal M, del Martínez-Ballesta MC. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. Planta. 2013;237:1297–310. https://doi.org/10.1007/S00425-013-1849-5.

López-Berenguer C, Martínez-Ballesta MDC, Moreno DA, Carvajal M, García-Viguera C. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem. 2009;57:572–8. https://doi.org/10.1021/jf802994p.

Metz TD, Dixit R, Earle ED. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep. 1995;15:287–92. https://doi.org/10.1007/BF00193738.

Kumar P, Srivastava DK. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol. Lett. 2016;38:1049–63. https://doi.org/10.1007/s10529-016-2080-9.

Taibi K, Del Campo AD, Vilagrosa A, Belles JM, Lopez-Gresa MP, Pla D, et al. Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01202.

Taïbi K, Del Campo AD, Vilagrosa A, Bellés JM, López-Gresa MP, López-Nicolás JM, et al. Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol. 2018;18:236. https://doi.org/10.1186/s12870-018-1464-5.

Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African J Bot. 2016;105:306–12. https://doi.org/10.1016/j.sajb.2016.03.011.

Souana K, Taïbi K, Ait Abderrahim L, Amirat M, Achir M, Boussaid M, et al. Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Sci Hortic. 2020;273:109641. https://doi.org/10.1016/j.scienta.2020.109641.

Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast. 2004;21:303–12. https://doi.org/10.1002/yea.1076.

Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell. 2004;16:2176–91. https://doi.org/10.1105/tpc.104.023036.

Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. J. Agric. Food Chem. 2020;68:7281–97. https://doi.org/10.1021/acs.jafc.0c01916.

Liu Y, Rossi M, Liang X, Zhang H, Zou L, Ong CN. An integrated metabolomics study of glucosinolate metabolism in different Brassicaceae genera. Metabolites. 2020;10:313. https://doi.org/10.3390/metabo10080313.

Podda A, Pollastri S, Bartolini P, Pisuttu C, Pellegrini E, Nali C, et al. Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC) Alef, var. sabellica L. J Sci Food Agric. 2019;99:5533–40. https://doi.org/10.1002/jsfa.9816.

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020;25:1117–30. https://doi.org/10.1016/j.tplants.2020.06.008.

Labudda M, Azam FMS. Glutathione-dependent responses of plants to drought: a review. Acta Soc. Bot. Pol. 2014;83:3–12.

Pyngrope S, Bhoomika K, Dubey RS. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 2013;250:585–600. https://doi.org/10.1007/s00709-012-0444-0.

Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, et al. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiol Biochem. 2021;158:53–64. https://doi.org/10.1016/j.plaphy.2020.11.044.

Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant. 2001;112:487–94. https://doi.org/10.1034/j.1399-3054.2001.1120405.x.

Khan MH, Panda SK. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant. 2008;30:81–9. https://doi.org/10.1007/s11738-007-0093-7.

Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem. 2004;42:695–701.

Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot. 2010;61:521–35. https://doi.org/10.1093/jxb/erp321.

Groppa MD, Benavides MP. Polyamines and abiotic stress: Recent advances. Amino Acids. 2008;34:35–45. https://doi.org/10.1007/s00726-007-0501-8.

Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, et al. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1237–49. https://doi.org/10.1007/s00425-010-1130-0.

Verbruggen N, Hermans C. Proline accumulation in plants: A review. Amino Acids. 2008;35:753–9. https://doi.org/10.1007/s00726-008-0061-6.

Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, Martnez-Ballesta MDC, Moreno DA, Ferchichi A, et al. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci World J. 2012;2012(291435):12. https://doi.org/10.1100/2012/291435.

Bandurska H. Free proline accumulation in leaves of cultivated plant species under water deficit conditions. Acta Agrobot. 2013;57:57–67. https://doi.org/10.5586/aa.2004.006.

Rodríguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta Biomembr. 2000;1469:1–30. https://doi.org/10.1016/S0304-4157(99)00013-1.

Santa-Cruz A, Acosta M, Rus A, Bolarin MC. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem. 1999;37:65–71. https://doi.org/10.1016/S0981-9428(99)80068-0.

Sanoubar R, Cellini A, Veroni AM, Spinelli F, Masia A, Vittori Antisari L, et al. Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. J Sci Food Agric. 2016;96:319–30. https://doi.org/10.1002/jsfa.7097.

Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem. 2005;53:8437–42. https://doi.org/10.1021/jf050884b.

Gisbert C, Timoneda A, Porcel R, Ros R, Mulet JM. Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy. 2020;10:1754. https://doi.org/10.3390/agronomy10111754.

Rios G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res. 2012. https://doi.org/10.1111/1567-1364.12013.

Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000;23:131–42. https://doi.org/10.1046/j.1365-313x.2000.00774.x.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem