- -

Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field

Mostrar el registro completo del ítem

Gonzalo, MJ.; Nájera, I.; Baixauli, C.; Gil, D.; Montoro, T.; Soriano, V.; Olivieri, F.... (2021). Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field. BMC Plant Biology. 21(1):1-28. https://doi.org/10.1186/s12870-021-03104-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182301

Ficheros en el ítem

Metadatos del ítem

Título: Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field
Autor: Gonzalo, María José Nájera, Inmaculada Baixauli, Carlos Gil, David Montoro, Teresa Soriano, Vicky Olivieri, Fabrizio Rigano, Maria Manuela Ganeva, Daniela Grozeva-Tileva, Stanislava Pevicharova, Galina Barone, Amalia GRANELL RICHART, ANTONIO Monforte Gilabert, Antonio José
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Background Due to global warming, the search for new sources for heat tolerance and the identification of genes involved in this process has become an important challenge as of today. The main objective of the current ...[+]
Palabras clave: Climate change , Germplasm , Abiotic stress , Fruit set
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/s12870-021-03104-4
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12870-021-03104-4
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/101000716/EU
info:eu-repo/grantAgreement/EC/H2020/679796/EU
Agradecimientos:
This work was supported by the European Commission H2020 Research and Innovation Programme through the TomGEM project, grant agreement No. 679796, and HARNESSTOM, grant agreement No. 101000716.
Tipo: Artículo

References

Battisti DS, Naylor RL. Historical warnings if future food insecurity with unprecedented seasonal heat. Science. 2009;323:240–4.

IPCC, 2014: Climate Change 2014: Mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge and New York, Cambridge University Press

Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. PNAS. 2009;106:15594–8. [+]
Battisti DS, Naylor RL. Historical warnings if future food insecurity with unprecedented seasonal heat. Science. 2009;323:240–4.

IPCC, 2014: Climate Change 2014: Mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge and New York, Cambridge University Press

Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. PNAS. 2009;106:15594–8.

Lohani N, Singh MB, Bhalla PL. High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot. 2020;71:555–68.

Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M. Physiological biochemical and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci. 2013;14:9643–84.

Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change. 2014;4:287.

Alsamir M, Ahmand N, Ariel V, Mahmood T, Trethiwan R. Phenotypic diversity and marker-trait association under heat stress in tomato (Solanum lycopersicum L.). Aust J Crop Sci. 2019;13:578–87.

Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plant: an overview. Environ Exp Bot. 2007;61:199–223.

Yeh CH, Kaplinsky NJ, Hu C, Charng YY. Some like it hot some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 2012;195:10–23.

Camejo D, Rodriguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcon JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol. 2005;162:281–9.

Sato S, Peet MM, Thomas JF. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic mild heat stress. Plant Cell Environ. 2000;23:719–26.

Charles WB, Harris RE. Tomato fruit-set at high and low temperatures. Can J Plant Sci. 1972;52:497–506.

Lohar DP, Peat WE. Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Sci Hortic. 1998;73:53–60.

Gonzalo MJ, Li YC, Chen K, Gil D, Montoro T, Nájera I, et al. Genetic control of reproductive traits in tomato under high temperature. Front Plant Sci. 2020;11:326.

Bitta CE, Gerads T. Plant tolerance to high temperatures in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013;4:273.

Dane F, Hunter AG, Chambliss OL. Fruit set pollen fertility and combining ability of selected tomato genotypes under high-temperature field conditions. J Amer Soc Hort Sci. 1991;116:906–10.

Paupière MJ, van Haperen P, Rieu I, Visser RGF, Tikunov YM, Bovy AG. Screening for pollen tolerance to high temperatures in tomato. Euphytica. 2017;213:130.

Driedonks N, Wolter-Arts M, Huber H, de Boer G-J, Vriezen W, Mariani C, et al. Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica. 2018;214:67.

Barnabás B, Jäger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38.

Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Auf-satz W, et al. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant. 2010;3:594–602.

Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22:3118–29.

Ayenan MAT, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji FAK, Asante IK, et al. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): an integrated approach. Agronomy. 2019;9:720.

Grandillo S, Chetelat R, Knapp S, Spooner D, Peralta I, Cammareri M, et al. Solanum sect Lycopersicon. In: Kole C editor. Wild Crop Relatives: Genomic and Breeding Resources. Berlin; Heidelberg: Springer. https://doi.org/10.1007/978-3-642-20450-0_9

Alam M, Sultana N, Ahmad S, Hossain M, Islam A. Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh J Agr Res. 2010;35:367–73.

Golam F, Phorhan ZH, Nezhadahmani A, Rahman M. Heat tolerance in tomato. Life Sci J. 2012;9:4.

Nahar K, Ullah SM. Effect of water stress on moisture content distribution in soil and morphological characters of two tomato (Lycopersicon esculentum Mill.) cultivars. J Sci Res. 2011;3:677–82.

Nahar K, Ullah SM. Morphological and physiological characters of tomato (Lycopersicon esculentum Mill.) cultivars under water stress. Bangladesh J Agri Res. 2012;37:355–60.

Arena C, Conti S, Francesca S, Melchionna G, Hájek J, Barták M, et al. Eco-physiological screening of different tomato genotypes in response to high temperatures: A combined field-to-laboratory approach. Plants. 2020;9:508.

Poudyal D, Rosengvist E, Ottosen C-O. Phenotyping from lab to field- tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field. Funct Plant Biol. 2018;46:44–55.

Zhou R, Wu Z, Wang X. Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Hortic Environ Biotechnol. 2018;59:499–509.

Jump AS, Peñuelas J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett. 2005;8:1010–20.

Kusmec A, de Leon N, Schnable P-S. Harnessing phenotypic plasticity to improve maize yields. Front Plant Sci. 2018;9:1377.

Mangin B, Casadebaig P, Cadic E, Blanchet N, Boniface MC, Carrère S, et al. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant Cell Environ. 2017;40:2276–91.

Diouf I, Derivot L, Koussevitzky S, Carretero Y, Bitton F, Moreau L, et al. Genetic basis of phenotypic plasticity and genotype x environment interaction in multi-parental population. J Exp Bot. 2020;71:5365–76.

Wang HJ, Rutishauser T, Tao ZX, Zhong SY, Ge QS, Dai JH. Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol. 2017;61:287–92.

Wen J, Jiang F, Weng Y. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019;19:398.

Feder ME, Hofmann GE. Heat-shock proteins molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–82.

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007;10:310–6.

Krishna P. Plant responses to heat stress. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress topics in current genetics. Berlin Heidelberg: Springer; 2003. https://doi.org/10.1007/978-3-540-39402-0_4.

Paupière MJ, van Heusden AW, Bovy AG. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites. 2014;4:889–920.

Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, et al. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol. 2016;170:2461–77.

Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. Plant Biotechnol J. 2020;18:2118–32.

Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot. 2010;61:453–62.

Ruggieri V, Calafiore R, Schettini C, Rigano MM, Olivieri F, Frusciante L, et al. Exploiting genetic and genomic resources to enhance heat tolerance in tomatoes. Agronomy. 2019;9:22.

Scarano A, Oliveri F, Gerardi C, Liso M, Chiesa M, Chieppa M, et al. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J Sci Food Agric. 2020;100:2791–9.

Xu J, Wolters-Ars M, Mariani C, Huber H, Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica. 2017;213:156.

Sato S, Peet MM, Gardnet RG. Altered flower retention and developmental patterns in nine tomato cultivars under elevated temperatures. Sci Hortic. 2004;101:95–101.

Sato S, Kamiyama M, Iwata T, Makita H, Furukawa H, Ikeda H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot. 2006;97:731–8.

Abdul-Baki AA. Tolerance of tomato cultivars and selected germplasm to heat stress. J Amer Soc Hort Sci. 1991;116:1113–6.

Hazra P, Ansary SH. Genetics of heat tolerance for floral and fruit set to high temperature stress in tomato (Lycopersicon esculentum Mill.). SABRAO J Breed Genet. 2008;40:117–25.

Panthee DR, Kressin JP, Piotrowski A. Heritability of flower number and fruit set under heat stress in tomato. Hortscience. 2018;53:1294–9.

Beaman JE, White CR, Seebacher F. Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol. 2016;31:237–49. https://doi.org/10.1016/jtree201601004.

Hazra P, Ansary SH, Sikder D, Peter KV. Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. Int J Plant Breed. 2007;1:31–40.

Villalta I, Bernet GP, Carbonell EA, Asins MJ. Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet. 2007;114:1001–17.

Zhou R, Yu X, Ottosen C-O, Rosenqvist E, Zhao L, Wang Y, et al. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Pathol. 2017;17:24.

Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis total chlorophyll stomatal conductance transpiration and dry matter. Plant Physiol. 2015;153:284–98.

Zhou R, Yu X, Kjær KH, Rosenqvist E, Ottosen CO, Wu Z. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environ Exp Bot. 2015;118:1–11.

Firon N, Shaked R, Peet MM, Pharr DM, Zamski E, Rosenfeld K, et al. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic. 2006;109:212–7.

Arnold PA, Krunk LEB, Nicotra AB. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 2019;222:1235–41.

Gerszberg A, Hnatuszko-Konka K. Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul. 2017;83:175–98.

He M, He C-Q, Ding N-Z. Abiotic stresses; general defences of land plants and chances for engineering multistress tolerance. Front Plant Sci. 2018;9:1771.

Mae L, Lawas F, Zuther E, Krishna Jagadish SV, Hincha DK. Molecular mechanisms of combined heat and drought stress resilence in cereals. Curr Opin Plant Biol. 2017;45:212–7.

Tricker PJ, ElHabti A, Schmidt J, Fleury D. The physiological and genetic basis of combined drought and heat tolerance in wheat. J Exp Bot. 2018;69:3195–210.

Abdul-Baki AA, Stommel JR. Pollen viability and fruit set of tomato genotypes under optimum-and high temperature regimens. HortSci. 1995;30:115–7.

Kugblenu YO, Oppong DE, Ofori K, Andersen M, Abenney-Mickson S, Sabi E, et al. Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agric Scand B Plant Soil Sci. 2013;63:516–22.

Opeña RT, Chen JT, Kuo CG, Chen HM. Genetic and physiological aspects of tropical adaptation in tomato. In: Adaptation of food crops to temperature and water stress. Taiwan: AVRDC; 1992. p. 257–70.

Rohrmann J, McQuinn R, Giovannoni JJ, Fernie AR, Tohge T. Tissue specificity and differential expression of transcription factors in tomato provide hints of unique regulatory networks during fruit ripening. Plant Signal Behav. 2012;7:1639–47.

Zhang SS, Yang H, Ding L, Song ZT, Ma H, Chang F, et al. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintain in fertility upon heat stress in Arabidopsis. Plant Cell. 2017;29:1007–23.

Sherzod R, Yang E, Cho M, Chae S, Chae W. Physiological traits associated with high temperature tolerance differ by fruit types and sizes in tomato (Solanum lycopersicum L.). Hortic Environ Biotechnol. 2020; https://doi.org/10.1007/s13580-020-00280-4

Foodlad MR. Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC, editors. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. New York: The Haworth Press Inc; 2005. p. 613–84.

Peet MM, Willits DH. The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric Forest Meteorol. 1998;92:191–202.

Su PH, Li HM. Arabidopsis stromal 70-kD heat shock proteins are essential for plant dev elopment and important for thermotolerance of germinating seeds. Plant Physiol. 2008;146:1231–41.

Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J. 2017;15:405–14.

Wang L, Ma K-B, Lu Z-G, Ren S-X, Jiang H-R, Cui J-W, et al. Differential physiological transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biol. 2020;20:86.

Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, et al. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics. 2014;15:344.

Kumar A, Sharma S, Chunduri V, Kaur A, Malhotra N, et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L. Sci Rep. 2020;10:7858.

Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, et al. Identification and characterization of a thermotolerant TILLING allele of heat shock binding protein 1 in tomato. Genes. 2019;10:516.

Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins ROS scavengers hormones and sugars in the heat stress response. J Exp Bot. 2009;60:3891–908.

Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy. 2020;10:788.

Baron KN, Schroeder DF, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci. 2012;188–189:48–50.

Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol. 2019;19:354.

Gao H, Brandizzi F, Benning C, Larkin RM. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2008;105:16398–403.

Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya Tsai YC, et al. A tomato bZIP transcription factor SlAREB is involved in water deficit and salt stress response. Planta. 2010;231:1459–73.

Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160:315–21.

JMP® 12 JSL Syntax Reference. Cary: SAS Institute Inc. NC, 1989–2019.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem