- -

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

Mostrar el registro completo del ítem

Garcia-Alcazar, M.; Giménez Caminero, ME.; Pineda Chaza, BJ.; Capel, C.; García Sogo, B.; Sánchez Martín-Sauceda, S.; Yuste-Lisbona, FJ.... (2017). Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Scientific Reports. 7:1-12. https://doi.org/10.1038/srep45333

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182474

Ficheros en el ítem

Metadatos del ítem

Título: Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival
Autor: Garcia-Alcazar, Manuel Giménez Caminero, Maria Estela Pineda Chaza, Benito José Capel, Carmen García Sogo, Begoña Sánchez Martín-Sauceda, Sibilla Yuste-Lisbona, Fernando J. Angosto, Trinidad Capel, Juan Moreno Ferrero, Vicente Lozano, Rafael
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xy ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep45333
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/srep45333
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-1-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE LA PRODUCTIVIDAD DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO-ESTRES ABIOTICO/
info:eu-repo/grantAgreement/Junta de Andalucía//P12-AGR-1482/
info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-3-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO - ESTRES ABIOTICO/
Agradecimientos:
This work was supported by research grants from the Spanish Ministry of Economy and Competitiveness and the UE-European Regional Development Fund (AGL2015-64991-C3-1-R, and AGL2015-64991-C3-3-R), and Junta de Andalucia ...[+]
Tipo: Artículo

References

Lambers, H., Chapin, F. S. 3rd & Pons, T. L. Plant Physiologycal Ecology (eds Lambers, H., Chapin, F. S. 3rd & Pons, T. L. ) 11–12 (Springer Science + Business Media, 2008).

Broun, P. & Somerville, C. Progress in plant metabolic engineering. Proc. Natl. Acad. Sci. USA 98, 8925–8927 (2001).

McGarvey, D. & Croteau, R. Terpenoid metabolism, Plant Cell 7, 1015–1026 (1995). [+]
Lambers, H., Chapin, F. S. 3rd & Pons, T. L. Plant Physiologycal Ecology (eds Lambers, H., Chapin, F. S. 3rd & Pons, T. L. ) 11–12 (Springer Science + Business Media, 2008).

Broun, P. & Somerville, C. Progress in plant metabolic engineering. Proc. Natl. Acad. Sci. USA 98, 8925–8927 (2001).

McGarvey, D. & Croteau, R. Terpenoid metabolism, Plant Cell 7, 1015–1026 (1995).

Rodríguez-Concepción, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002).

Bach, T. J & Rohmer, M. Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches (ed. Bach, T.J . & Rohmer, M. ) (Springer Science & Business Media, 2013).

Gutensohn, M. & Dudareva, N. Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches ( Bach, T. J. & Rohmer, M. eds) 155–168 (Springer Science + Buiness Media, 2013).

Vranova, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700 (2013).

Spurgeon, S. L & Porter J. W. Biosynthesis of carotenoids. In: Biosynthesis of isoprenoid compounds, vol2 ( Porter J. W ., Spurgeon S. L. eds) 1–122 (John Wiley & Sons, 1981).

Goldstein J. L. & Brown M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

Rohmer, M. Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs? Prog. Drug Res. 50, 135–154 (1998).

Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16, 565–574 (1999).

Lichtenthaler H. K. The 1-deoxy-D-xylulose-5-phospate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 50, 47–65 (1999).

Arigoni, D. et al. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94, 10600–10605 (1997).

Eisenreich, W. et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221–R233 (1998).

Sprenger, G. A. et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94, 12857–12862 (1997).

Lange, B. M., Wildung, M. R., McCaskill, D. & Croteau, R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95, 2100–2104 (1998).

Bouvier, F., d’Harlingue, A., Suire, C., Backhaus, R. A. & Camara, B. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits1. Plant Physiol. 117, 1423–1431 (1998).

Estévez, J. M. et al. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol. 124, 95–104 (2000).

Lois, L. M., Rodríguez-Concepción, M., Gallego, F., Campos, N. & Boronat, A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22, 503–513 (2000).

Córdoba, E. et al. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J. Exp. Bot. 62, 2023–2038 (2011).

Kim, Y. B. et al. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiol. 29, 737–749 (2009).

Walter, M. H., Hans, J. & Strack, D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 31, 243–254 (2002).

Floss, D. S. et al. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J. 56, 86–100 (2008).

Iriti, M. & Faoro. F. Bioactivity of grape chemicals for human health. Nat. Prod. Commun. 4, 611–634 (2009).

Islam, M. A. et al. Dietary Phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxid. Med. Cell Longev. 2016, 5137431, doi: 10.1155/2016/5137431 (2016).

Estévez, J. M., Cantero, A., Reindl, A., Reichler, S. & León, P. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276, 22901–22909 (2001).

Carretero-Paulet, L. et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62, 683–695 (2006).

Enfissi, E. M. et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3, 17–27 (2005).

Zhang, M., Li, K., Zhang, C., Gai, J. & Yu, D. Identification and characterization of class 1 DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the MEP pathway from soybean. Mol. Biol. Rep. 36, 879–887 (2009).

Araki, N., Kusumi, K., Masamoto, K. & Iba, K. Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol. Plant 108, 19–24 (2000).

Mandel, M. A., Feldmann, K. A., Herrera-Estrella, L., Rocha-Sosa, M. & León, P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9, 649–668 (1996).

Carretero-Paulet, L. et al. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana . Gene 524, 40–53 (2013).

Besser, K. et al. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol. 149, 499–514 (2009).

Hofberger, J. A. et al. Large-Scale Evolutionary analysis of genes and supergene clusters from terpenoid modular pathways provides insights into metabolic diversification in flowering plants. PLoS One 10, e0128808, doi: 10.1371/journal.pone.0128808 (2015).

Vaucheret, H. et al. Transgene-induced gene silencing in plants. Plant J. 16, 651–659 (1998).

Cordoba, E., Salmi, M. & León, P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 60, 2933–2943 (2009).

Ruiz-Sola, M. A. & Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10, e0158, 10.1199/tab.0158 (2012).

Sallaud, C. et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–464 (2004).

Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana . Science 301, 653–657 (2003).

Menda, N., Semel, Y., Peled, D., Eshed, Y. & Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 38, 861–872 (2004).

Muñoz-Bertomeu, J., Arrillaga, I., Ros, R. & Segura, J. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142, 890–900 (2006).

Guevara-García, A. et al. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17, 628–643 (2005).

McHale, N. A., Hanson, K. R. & Zelitch, I. A Nuclear mutation in Nicotiana sylvestris causing a thiamine-reversible defect in synthesis of chloroplast pigments. Plant Physiol. 88, 930–935 (1988).

Xiang, S., Usunow, G., Lange, G., Busch, M. & Tong, L. Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J. Biol. Chem. 282, 2676–2682 (2007).

Paetzold, H. et al. The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol. Plant. 3, 904–916 (2010).

Lichtenthaler, H. K., Rohmer, M. & Schwender, J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101, 643–652 (1997).

Hemmerlin, A. et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278, 26666–26676 (2003).

Laule, O. et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 100, 6866–6871 (2003).

Pankratov, I. et al. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant J. 88, 82–94 (2016).

Rodríguez-Concepción, M. et al. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 27, 213–222 (2001).

Campisi, L. et al. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17, 699–707 (1999).

Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497 (1962).

Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and Carotenoids: Measurement and characterization by UV-VIS Spectroscopy. In Current protocols in food analytical chemistry (ed. Wrolstad, R. E. et al.) F4.3.1–F4.3.8 (John Wiley & Sons, 2001).

Loh, E. Anchored PCR: amplification with single-sided specificity. Methods 2, 11–19 (1991).

Giménez, E. et al. Functional analysis of the Arlequin mutant corroborates the essential role of the ARLEQUIN/TAGL1 gene during reproductive development of tomato. PLoS One 5, 14427, 10.1371/journal.pone.0014427 (2010).

Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238 (2003).

Atarés, A. et al. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii . Plant Cell Rep. 30, 1865–1879 (2011).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem