- -

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Alcazar, Manuel es_ES
dc.contributor.author Giménez Caminero, Maria Estela es_ES
dc.contributor.author Pineda Chaza, Benito José es_ES
dc.contributor.author Capel, Carmen es_ES
dc.contributor.author García Sogo, Begoña es_ES
dc.contributor.author Sánchez Martín-Sauceda, Sibilla es_ES
dc.contributor.author Yuste-Lisbona, Fernando J. es_ES
dc.contributor.author Angosto, Trinidad es_ES
dc.contributor.author Capel, Juan es_ES
dc.contributor.author Moreno Ferrero, Vicente es_ES
dc.contributor.author Lozano, Rafael es_ES
dc.date.accessioned 2022-05-10T18:06:14Z
dc.date.available 2022-05-10T18:06:14Z
dc.date.issued 2017-03-28 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182474
dc.description.abstract [EN] Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the ratelimiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants. es_ES
dc.description.sponsorship This work was supported by research grants from the Spanish Ministry of Economy and Competitiveness and the UE-European Regional Development Fund (AGL2015-64991-C3-1-R, and AGL2015-64991-C3-3-R), and Junta de Andalucia (P12-AGR-1482). PhD fellowship to M.G.-A. was funded by the FPU Programme of the Spanish Ministry of Science and Innovation. The authors thank research facilities provided by the Campus de Excelencia Internacional Agroalimentario (CeiA3). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep45333 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-1-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE LA PRODUCTIVIDAD DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO-ESTRES ABIOTICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P12-AGR-1482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-3-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO - ESTRES ABIOTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Garcia-Alcazar, M.; Giménez Caminero, ME.; Pineda Chaza, BJ.; Capel, C.; García Sogo, B.; Sánchez Martín-Sauceda, S.; Yuste-Lisbona, FJ.... (2017). Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Scientific Reports. 7:1-12. https://doi.org/10.1038/srep45333 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/srep45333 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28350010 es_ES
dc.identifier.pmcid PMC5368609 es_ES
dc.relation.pasarela S\352889 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lambers, H., Chapin, F. S. 3rd & Pons, T. L. Plant Physiologycal Ecology (eds Lambers, H., Chapin, F. S. 3rd & Pons, T. L. ) 11–12 (Springer Science + Business Media, 2008). es_ES
dc.description.references Broun, P. & Somerville, C. Progress in plant metabolic engineering. Proc. Natl. Acad. Sci. USA 98, 8925–8927 (2001). es_ES
dc.description.references McGarvey, D. & Croteau, R. Terpenoid metabolism, Plant Cell 7, 1015–1026 (1995). es_ES
dc.description.references Rodríguez-Concepción, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002). es_ES
dc.description.references Bach, T. J & Rohmer, M. Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches (ed. Bach, T.J . & Rohmer, M. ) (Springer Science & Business Media, 2013). es_ES
dc.description.references Gutensohn, M. & Dudareva, N. Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches ( Bach, T. J. & Rohmer, M. eds) 155–168 (Springer Science + Buiness Media, 2013). es_ES
dc.description.references Vranova, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700 (2013). es_ES
dc.description.references Spurgeon, S. L & Porter J. W. Biosynthesis of carotenoids. In: Biosynthesis of isoprenoid compounds, vol2 ( Porter J. W ., Spurgeon S. L. eds) 1–122 (John Wiley & Sons, 1981). es_ES
dc.description.references Goldstein J. L. & Brown M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990). es_ES
dc.description.references Rohmer, M. Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs? Prog. Drug Res. 50, 135–154 (1998). es_ES
dc.description.references Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16, 565–574 (1999). es_ES
dc.description.references Lichtenthaler H. K. The 1-deoxy-D-xylulose-5-phospate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 50, 47–65 (1999). es_ES
dc.description.references Arigoni, D. et al. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94, 10600–10605 (1997). es_ES
dc.description.references Eisenreich, W. et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221–R233 (1998). es_ES
dc.description.references Sprenger, G. A. et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94, 12857–12862 (1997). es_ES
dc.description.references Lange, B. M., Wildung, M. R., McCaskill, D. & Croteau, R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95, 2100–2104 (1998). es_ES
dc.description.references Bouvier, F., d’Harlingue, A., Suire, C., Backhaus, R. A. & Camara, B. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits1. Plant Physiol. 117, 1423–1431 (1998). es_ES
dc.description.references Estévez, J. M. et al. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol. 124, 95–104 (2000). es_ES
dc.description.references Lois, L. M., Rodríguez-Concepción, M., Gallego, F., Campos, N. & Boronat, A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22, 503–513 (2000). es_ES
dc.description.references Córdoba, E. et al. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J. Exp. Bot. 62, 2023–2038 (2011). es_ES
dc.description.references Kim, Y. B. et al. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiol. 29, 737–749 (2009). es_ES
dc.description.references Walter, M. H., Hans, J. & Strack, D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 31, 243–254 (2002). es_ES
dc.description.references Floss, D. S. et al. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J. 56, 86–100 (2008). es_ES
dc.description.references Iriti, M. & Faoro. F. Bioactivity of grape chemicals for human health. Nat. Prod. Commun. 4, 611–634 (2009). es_ES
dc.description.references Islam, M. A. et al. Dietary Phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxid. Med. Cell Longev. 2016, 5137431, doi: 10.1155/2016/5137431 (2016). es_ES
dc.description.references Estévez, J. M., Cantero, A., Reindl, A., Reichler, S. & León, P. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276, 22901–22909 (2001). es_ES
dc.description.references Carretero-Paulet, L. et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62, 683–695 (2006). es_ES
dc.description.references Enfissi, E. M. et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3, 17–27 (2005). es_ES
dc.description.references Zhang, M., Li, K., Zhang, C., Gai, J. & Yu, D. Identification and characterization of class 1 DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the MEP pathway from soybean. Mol. Biol. Rep. 36, 879–887 (2009). es_ES
dc.description.references Araki, N., Kusumi, K., Masamoto, K. & Iba, K. Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol. Plant 108, 19–24 (2000). es_ES
dc.description.references Mandel, M. A., Feldmann, K. A., Herrera-Estrella, L., Rocha-Sosa, M. & León, P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9, 649–668 (1996). es_ES
dc.description.references Carretero-Paulet, L. et al. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana . Gene 524, 40–53 (2013). es_ES
dc.description.references Besser, K. et al. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol. 149, 499–514 (2009). es_ES
dc.description.references Hofberger, J. A. et al. Large-Scale Evolutionary analysis of genes and supergene clusters from terpenoid modular pathways provides insights into metabolic diversification in flowering plants. PLoS One 10, e0128808, doi: 10.1371/journal.pone.0128808 (2015). es_ES
dc.description.references Vaucheret, H. et al. Transgene-induced gene silencing in plants. Plant J. 16, 651–659 (1998). es_ES
dc.description.references Cordoba, E., Salmi, M. & León, P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 60, 2933–2943 (2009). es_ES
dc.description.references Ruiz-Sola, M. A. & Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10, e0158, 10.1199/tab.0158 (2012). es_ES
dc.description.references Sallaud, C. et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–464 (2004). es_ES
dc.description.references Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana . Science 301, 653–657 (2003). es_ES
dc.description.references Menda, N., Semel, Y., Peled, D., Eshed, Y. & Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 38, 861–872 (2004). es_ES
dc.description.references Muñoz-Bertomeu, J., Arrillaga, I., Ros, R. & Segura, J. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142, 890–900 (2006). es_ES
dc.description.references Guevara-García, A. et al. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17, 628–643 (2005). es_ES
dc.description.references McHale, N. A., Hanson, K. R. & Zelitch, I. A Nuclear mutation in Nicotiana sylvestris causing a thiamine-reversible defect in synthesis of chloroplast pigments. Plant Physiol. 88, 930–935 (1988). es_ES
dc.description.references Xiang, S., Usunow, G., Lange, G., Busch, M. & Tong, L. Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J. Biol. Chem. 282, 2676–2682 (2007). es_ES
dc.description.references Paetzold, H. et al. The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol. Plant. 3, 904–916 (2010). es_ES
dc.description.references Lichtenthaler, H. K., Rohmer, M. & Schwender, J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101, 643–652 (1997). es_ES
dc.description.references Hemmerlin, A. et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278, 26666–26676 (2003). es_ES
dc.description.references Laule, O. et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 100, 6866–6871 (2003). es_ES
dc.description.references Pankratov, I. et al. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant J. 88, 82–94 (2016). es_ES
dc.description.references Rodríguez-Concepción, M. et al. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 27, 213–222 (2001). es_ES
dc.description.references Campisi, L. et al. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17, 699–707 (1999). es_ES
dc.description.references Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497 (1962). es_ES
dc.description.references Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and Carotenoids: Measurement and characterization by UV-VIS Spectroscopy. In Current protocols in food analytical chemistry (ed. Wrolstad, R. E. et al.) F4.3.1–F4.3.8 (John Wiley & Sons, 2001). es_ES
dc.description.references Loh, E. Anchored PCR: amplification with single-sided specificity. Methods 2, 11–19 (1991). es_ES
dc.description.references Giménez, E. et al. Functional analysis of the Arlequin mutant corroborates the essential role of the ARLEQUIN/TAGL1 gene during reproductive development of tomato. PLoS One 5, 14427, 10.1371/journal.pone.0014427 (2010). es_ES
dc.description.references Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238 (2003). es_ES
dc.description.references Atarés, A. et al. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii . Plant Cell Rep. 30, 1865–1879 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem