- -

Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

Mostrar el registro completo del ítem

Yuste-Lisbona, FJ.; Quinet, M.; Fernández-Lozano, A.; Pineda Chaza, BJ.; Moreno Ferrero, V.; Angosto, T.; Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports. 6:1-12. https://doi.org/10.1038/srep18796

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182544

Ficheros en el ítem

Metadatos del ítem

Título: Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato
Autor: Yuste-Lisbona, Fernando J. Quinet, Muriel Fernández-Lozano, Antonia Pineda Chaza, Benito José Moreno Ferrero, Vicente Angosto, Trinidad Lozano, Rafael
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep18796
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/srep18796
Código del Proyecto:
info:eu-repo/grantAgreement/Junta de Andalucía//P12-AGR-06931/
info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C02-01/
info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C02-02/
info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C03-01//Identificación, etiquetado y análisis funcional de genes implicados en el cuajado del fruto de tomate y tolerancia a la salinidad en especies silvestres relacionadas/
Agradecimientos:
This work was supported by the research grants (AGL2012-40150-C02-01 and AGL2012-40150-C02-02) and a fellowship to A.F-L from the Spanish Ministry of Economy and Competitiveness, and the Junta de Andalucia (grant P12-AGR-06931). ...[+]
Tipo: Artículo

References

Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: A comparative view. Ann Bot. 100, 659–676 (2007).

Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

Song, Y. H., Ito, S. & Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575–583 (2013). [+]
Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: A comparative view. Ann Bot. 100, 659–676 (2007).

Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

Song, Y. H., Ito, S. & Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575–583 (2013).

O’Maoiléidigh, D. S., Graciet, E. & Wellmer, F. Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014).

Quinet, M. & Kinet, J. M. Transition to flowering and morphogenesis of reproductive structures in tomato. Int. J. Dev. Biol. 1, 64–74 (2007).

Samach, A. & Lotan, H. The transition to flowering in tomato. Plant Biotech. 24, 71–82 (2007).

Lozano, R., Gimenez, E., Cara, B., Capel, J. & Angosto, T. Genetic analysis of reproductive development in tomato. Int. J. Dev. Biol. 53, 8–10 (2009).

Périlleux, C., Lobet, G. & Tocquin, P. Inflorescence development in tomato: gene functions within a zigzag model. Front. Plant Sci. 5, 121 (2014).

Lippman, Z. B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008).

Park, S. J., Jiang, K., Schatz, M. C. & Lippman, Z. B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. USA 109, 639–644 (2012).

Thouet, J., Quinet, M., Lutts, S., Kinet, J. M. & Périlleux, C. Repression of floral meristem fate is crucial in shaping tomato inflorescence. PLoS ONE 7, e31096 (2012).

Chetelat, R. T. Revised list of miscellaneous stocks. Tomato Genet. Cooperative Rep. 55, 48–69 (2005).

Molinero-Rosales, N. et al. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20, 685–693 (1999).

Allen, K. D. & Sussex, I. M. Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta 200, 254–264 (1996).

Quinet, M. et al. Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure. J. Exp. Bot. 57, 1381–1390 (2006).

MacAlister, C. A. et al. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat. Genet. 44, 1393–1398 (2012).

Butler, L. The linkage map of the tomato. J. Hered. 43, 25–35 (1952).

Szymkowiak, E. J. & Irish, E. E. Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11, 159–175 (1999).

Mao, L. et al. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 206, 910–913 (2000).

Molinero-Rosales, N., Latorre, A., Jamilena, M. & Lozano, R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218, 427–434 (2004).

Lifschitz, E. et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 6398–6403 (2006).

Lifschitz, E. & Eshed, Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J. Exp. Bot. 57, 3405–3414 (2006).

Vrebalov, J. et al. A MADS-Box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) Locus. Science 296, 343–346 (2002).

Nakano, T. et al. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol. 158, 439–450 (2012).

Nakano, T., Fujisawa, M., Shima, Y. & Ito, Y. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals. BMC Plant Biol. 13, 40 (2013).

Liu, D. et al. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J. 77, 284–296 (2014).

Campisi, L. et al. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17, 699–707 (1999).

Schupp, J. M., Price, L. B., Klevytska, A. & Keim, P. Internal and flanking sequence from AFLP fragments using ligation-mediated suppression PCR. Biotechniques 26, 905–912 (1999).

Spertini, D., Béliveau, C. & Bellemare, G. Screening of transgenic plants by amplification of unknown genomic DNA flanking T-DNA. Biotechniques 27, 308–314 (1999).

Szymkowiak, E. J. & Irish, E. E. JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta 223, 646–658 (2006).

Shalit, A. et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106, 8392–8397 (2009).

Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010).

Grandi, V., Gregis, V., Martin, M. & Kater, M. M. Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. Plant J. 69, 881–893 (2012).

Teo, Z. W., Song, S., Wang, Y. Q., Liu, J. & Yu, H. New insights into the regulation of inflorescence architecture. Trends Plant Sci. 19, 158–165 (2014).

Ellul, P. et al. Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol. Breed. 13, 155–163 (2004).

Sun, L. M., Zhang, J. Z., Mei, L. & Hu, C. G. Molecular cloning, promoter analysis and functional characterization of APETALA 1-like gene from precocious trifoliate orange (Poncirus trifoliata L. Raf.). Sci. Hort. 178, 95–105 (2014).

Quinet, M. et al. Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytol. 170, 701–710 (2006b).

Huijser, P. et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249 (1992).

Irish, V. F. & Sussex, I. S. Function of the apetala-1 gene during Arabidopsis Floral Development. Plant Cell 2, 741–753 (1990).

Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940 (2004).

Atarés, A. et al. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep. 30, 1865–1879 (2011).

Lozano, R. et al. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes. Plant Physiol. 117, 91–100 (1998).

Dellaporta, S. L., Wood, J. & Hicks, J. B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19–21 (1983).

Ausubel, F. M. et al. Preparation and analysis of DNA, In Current Protocols in Molecular Biology. (eds Ausubel, F. M. et al. .) Unit 2.2. (John Wiley and Sons, 1995).

Workman, C. et al. A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 3, research0048 (2002).

Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem