- -

Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yuste-Lisbona, Fernando J. es_ES
dc.contributor.author Quinet, Muriel es_ES
dc.contributor.author Fernández-Lozano, Antonia es_ES
dc.contributor.author Pineda Chaza, Benito José es_ES
dc.contributor.author Moreno Ferrero, Vicente es_ES
dc.contributor.author Angosto, Trinidad es_ES
dc.contributor.author Lozano, Rafael es_ES
dc.date.accessioned 2022-05-11T18:06:22Z
dc.date.available 2022-05-11T18:06:22Z
dc.date.issued 2016-01-04 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182544
dc.description.abstract [EN] Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success and crop yield. In this study, a new mutant, vegetative inflorescence (mc-vin), was isolated from the screening of a tomato (Solanum lycopersicum L.) T-DNA mutant collection. The mc-vin mutant developed inflorescences that reverted to vegetative growth after forming two to three flowers, indicating that the mutated gene is essential for the maintenance of inflorescence meristem identity. The T-DNA was inserted into the promoter region of the MACROCALYX (MC) gene; this result together with complementation test and expression analyses proved that mc-vin is a new knock-out allele of MC. Double combinations between mc-vin and jointless (j) and single flower truss (sft) inflorescence mutants showed that MC has pleiotropic effects on the reproductive phase, and that it interacts with SFT and J to control floral transition and inflorescence fate in tomato. In addition, MC expression was mis-regulated in j and sft mutants whereas J and SFT were significantly up-regulated in the mc-vin mutant. Together, these results provide new evidences about MC function as part of the genetic network regulating the development of tomato inflorescence meristem. es_ES
dc.description.sponsorship This work was supported by the research grants (AGL2012-40150-C02-01 and AGL2012-40150-C02-02) and a fellowship to A.F-L from the Spanish Ministry of Economy and Competitiveness, and the Junta de Andalucia (grant P12-AGR-06931). B.P. was supported by the European Commission through the JAE-Doc Program of the Spanish National Research Council (CSIC). The authors would also like to thank the research facilities provided by the Campus de Excelencia Internacional Agroalimentario (CeiA3) es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep18796 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P12-AGR-06931/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C02-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C03-01//Identificación, etiquetado y análisis funcional de genes implicados en el cuajado del fruto de tomate y tolerancia a la salinidad en especies silvestres relacionadas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Yuste-Lisbona, FJ.; Quinet, M.; Fernández-Lozano, A.; Pineda Chaza, BJ.; Moreno Ferrero, V.; Angosto, T.; Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports. 6:1-12. https://doi.org/10.1038/srep18796 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/srep18796 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.pmid 26727224 es_ES
dc.identifier.pmcid PMC4698712 es_ES
dc.relation.pasarela S\327260 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: A comparative view. Ann Bot. 100, 659–676 (2007). es_ES
dc.description.references Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012). es_ES
dc.description.references Song, Y. H., Ito, S. & Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575–583 (2013). es_ES
dc.description.references O’Maoiléidigh, D. S., Graciet, E. & Wellmer, F. Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014). es_ES
dc.description.references Quinet, M. & Kinet, J. M. Transition to flowering and morphogenesis of reproductive structures in tomato. Int. J. Dev. Biol. 1, 64–74 (2007). es_ES
dc.description.references Samach, A. & Lotan, H. The transition to flowering in tomato. Plant Biotech. 24, 71–82 (2007). es_ES
dc.description.references Lozano, R., Gimenez, E., Cara, B., Capel, J. & Angosto, T. Genetic analysis of reproductive development in tomato. Int. J. Dev. Biol. 53, 8–10 (2009). es_ES
dc.description.references Périlleux, C., Lobet, G. & Tocquin, P. Inflorescence development in tomato: gene functions within a zigzag model. Front. Plant Sci. 5, 121 (2014). es_ES
dc.description.references Lippman, Z. B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008). es_ES
dc.description.references Park, S. J., Jiang, K., Schatz, M. C. & Lippman, Z. B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. USA 109, 639–644 (2012). es_ES
dc.description.references Thouet, J., Quinet, M., Lutts, S., Kinet, J. M. & Périlleux, C. Repression of floral meristem fate is crucial in shaping tomato inflorescence. PLoS ONE 7, e31096 (2012). es_ES
dc.description.references Chetelat, R. T. Revised list of miscellaneous stocks. Tomato Genet. Cooperative Rep. 55, 48–69 (2005). es_ES
dc.description.references Molinero-Rosales, N. et al. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20, 685–693 (1999). es_ES
dc.description.references Allen, K. D. & Sussex, I. M. Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta 200, 254–264 (1996). es_ES
dc.description.references Quinet, M. et al. Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure. J. Exp. Bot. 57, 1381–1390 (2006). es_ES
dc.description.references MacAlister, C. A. et al. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat. Genet. 44, 1393–1398 (2012). es_ES
dc.description.references Butler, L. The linkage map of the tomato. J. Hered. 43, 25–35 (1952). es_ES
dc.description.references Szymkowiak, E. J. & Irish, E. E. Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11, 159–175 (1999). es_ES
dc.description.references Mao, L. et al. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 206, 910–913 (2000). es_ES
dc.description.references Molinero-Rosales, N., Latorre, A., Jamilena, M. & Lozano, R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218, 427–434 (2004). es_ES
dc.description.references Lifschitz, E. et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 6398–6403 (2006). es_ES
dc.description.references Lifschitz, E. & Eshed, Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J. Exp. Bot. 57, 3405–3414 (2006). es_ES
dc.description.references Vrebalov, J. et al. A MADS-Box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) Locus. Science 296, 343–346 (2002). es_ES
dc.description.references Nakano, T. et al. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol. 158, 439–450 (2012). es_ES
dc.description.references Nakano, T., Fujisawa, M., Shima, Y. & Ito, Y. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals. BMC Plant Biol. 13, 40 (2013). es_ES
dc.description.references Liu, D. et al. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J. 77, 284–296 (2014). es_ES
dc.description.references Campisi, L. et al. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17, 699–707 (1999). es_ES
dc.description.references Schupp, J. M., Price, L. B., Klevytska, A. & Keim, P. Internal and flanking sequence from AFLP fragments using ligation-mediated suppression PCR. Biotechniques 26, 905–912 (1999). es_ES
dc.description.references Spertini, D., Béliveau, C. & Bellemare, G. Screening of transgenic plants by amplification of unknown genomic DNA flanking T-DNA. Biotechniques 27, 308–314 (1999). es_ES
dc.description.references Szymkowiak, E. J. & Irish, E. E. JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta 223, 646–658 (2006). es_ES
dc.description.references Shalit, A. et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106, 8392–8397 (2009). es_ES
dc.description.references Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010). es_ES
dc.description.references Grandi, V., Gregis, V., Martin, M. & Kater, M. M. Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. Plant J. 69, 881–893 (2012). es_ES
dc.description.references Teo, Z. W., Song, S., Wang, Y. Q., Liu, J. & Yu, H. New insights into the regulation of inflorescence architecture. Trends Plant Sci. 19, 158–165 (2014). es_ES
dc.description.references Ellul, P. et al. Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol. Breed. 13, 155–163 (2004). es_ES
dc.description.references Sun, L. M., Zhang, J. Z., Mei, L. & Hu, C. G. Molecular cloning, promoter analysis and functional characterization of APETALA 1-like gene from precocious trifoliate orange (Poncirus trifoliata L. Raf.). Sci. Hort. 178, 95–105 (2014). es_ES
dc.description.references Quinet, M. et al. Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytol. 170, 701–710 (2006b). es_ES
dc.description.references Huijser, P. et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249 (1992). es_ES
dc.description.references Irish, V. F. & Sussex, I. S. Function of the apetala-1 gene during Arabidopsis Floral Development. Plant Cell 2, 741–753 (1990). es_ES
dc.description.references Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940 (2004). es_ES
dc.description.references Atarés, A. et al. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep. 30, 1865–1879 (2011). es_ES
dc.description.references Lozano, R. et al. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes. Plant Physiol. 117, 91–100 (1998). es_ES
dc.description.references Dellaporta, S. L., Wood, J. & Hicks, J. B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19–21 (1983). es_ES
dc.description.references Ausubel, F. M. et al. Preparation and analysis of DNA, In Current Protocols in Molecular Biology. (eds Ausubel, F. M. et al. .) Unit 2.2. (John Wiley and Sons, 1995). es_ES
dc.description.references Workman, C. et al. A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 3, research0048 (2002). es_ES
dc.description.references Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem