- -

All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra Gómez, Jorge es_ES
dc.contributor.author Pernice, Wolfram H. P. es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2022-05-20T18:05:51Z
dc.date.available 2022-05-20T18:05:51Z
dc.date.issued 2021-05-04 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182752
dc.description.abstract [EN] A wide variety of nanophotonic applications require controlling the optical phase without changing optical absorption, which in silicon (Si) photonics has been mostly pursued electrically. Here, we investigate the unique light¿matter interaction exhibited by epsilon-near-zero (ENZ) materials for all-optical phase control in nanophotonic silicon waveguides. Thermo-optic all-optical phase tuning is achieved using an ENZ material as a compact, low-loss, and efficient optical heat source. For a 10-¿m-long ENZ/Si waveguide, insertion loss below 0.5 dB for the transverse electric (TE) polarization is predicted together with a high control efficiency of ~0.107¿ mW¿1. Our proposal provides a new approach to achieve all-optical, on-chip, and low-loss phase tuning in silicon photonic circuits. es_ES
dc.description.sponsorship This work is supported by Ministerio de Ciencia e Innovacion (PID2019-111460GB-I00, FPU17/04224) and Generalitat Valenciana (PROMETEO/2019/123). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject All-optical es_ES
dc.subject Phase shifting es_ES
dc.subject Silicon photonics es_ES
dc.subject Indium tin oxide es_ES
dc.subject Epsilon-near-zero materials es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-021-88865-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Parra Gómez, J.; Pernice, WHP.; Sanchis Kilders, P. (2021). All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters. Scientific Reports. 11(1):1-9. https://doi.org/10.1038/s41598-021-88865-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-021-88865-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33947896 es_ES
dc.identifier.pmcid PMC8096950 es_ES
dc.relation.pasarela S\436704 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.description.references Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216. https://doi.org/10.1038/s41586-020-2764-0 (2020). es_ES
dc.description.references Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199. https://doi.org/10.1038/nature11727 (2013). es_ES
dc.description.references Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446. https://doi.org/10.1038/nphoton.2017.93 (2017). es_ES
dc.description.references Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539. https://doi.org/10.1038/s41566-018-0236-y (2018). es_ES
dc.description.references Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312. https://doi.org/10.1364/OE.18.018312 (2010). es_ES
dc.description.references Deng, H. & Bogaerts, W. Pure phase modulation based on a silicon plasma dispersion modulator. Opt. Express 27, 27191. https://doi.org/10.1364/oe.27.027191 (2019). es_ES
dc.description.references Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202. https://doi.org/10.1038/nature04706 (2006). es_ES
dc.description.references Berciano, M. et al. Fast linear electro-optic effect in a centrosymmetric semiconductor. Commun. Phys. 1, 64. https://doi.org/10.1038/s42005-018-0064-x (2018). es_ES
dc.description.references Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206. https://doi.org/10.1038/nphoton.2017.14 (2017). es_ES
dc.description.references Castellan, C. et al. Field-induced nonlinearities in silicon waveguides embedded in lateral p-n junctions. Front. Phys. 7, 1–9. https://doi.org/10.3389/fphy.2019.00104 (2019). es_ES
dc.description.references Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019). es_ES
dc.description.references Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 14, 256–262. https://doi.org/10.1038/s41566-020-0590-4 (2020). es_ES
dc.description.references Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084. https://doi.org/10.1038/nature02921 (2004). es_ES
dc.description.references Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3. https://doi.org/10.1063/1.2089185 (2005). es_ES
dc.description.references Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246. https://doi.org/10.1038/nphoton.2008.31 (2008). es_ES
dc.description.references Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511. https://doi.org/10.1021/nl9041017 (2010). es_ES
dc.description.references Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187. https://doi.org/10.1038/nphoton.2009.268 (2010). es_ES
dc.description.references Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483. https://doi.org/10.1038/nphoton.2010.89 (2010). es_ES
dc.description.references Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 3, 396. https://doi.org/10.1364/OPTICA.3.000396 (2016). es_ES
dc.description.references Gil-Molina, A. et al. Optical free-carrier generation in silicon nano-waveguides at 1550 nm. Appl. Phys. Lett. 112, 251104. https://doi.org/10.1063/1.5023589 (2018). es_ES
dc.description.references Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater. 6, 1–36. https://doi.org/10.1002/adom.201701292 (2018). es_ES
dc.description.references Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233. https://doi.org/10.1364/OPTICA.5.000233 (2018). es_ES
dc.description.references Zhou, B., Li, E., Bo, Y. & Wang, A. X. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol. 38, 3338–3345. https://doi.org/10.1109/JLT.2020.2979192 (2020). es_ES
dc.description.references Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics. Optica 7, 333. https://doi.org/10.1364/OPTICA.389437 (2020). es_ES
dc.description.references Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Non-volatile epsilon-near-zero readout memory. Opt. Lett. 44, 3932. https://doi.org/10.1364/OL.44.003932 (2019). es_ES
dc.description.references Parra, J., Olivares, I., Ramos, F. & Sanchis, P. Ultra-compact non-volatile Mach-Zehnder switch enabled by a high-mobility transparent conducting oxide. Opt. Lett. 45, 1503. https://doi.org/10.1364/OL.388363 (2020). es_ES
dc.description.references Li, E. & Wang, A. X. Femto-Joule all-optical switching using epsilon-near-zero high-mobility conductive oxide. IEEE J. Select. Top. Quant. Electron. 27, 1–9. https://doi.org/10.1109/JSTQE.2020.3018104 (2021). es_ES
dc.description.references Modest, M. F. Radiative Heat Transfer 3rd edn. (Elsevier Inc., 2013). es_ES
dc.description.references Wu, K., Wang, Y., Qiu, C. & Chen, J. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res. 6, C22. https://doi.org/10.1364/PRJ.6.000C22 (2018). es_ES
dc.description.references Sturlesi, B., Grajower, M., Mazurski, N. & Levy, U. Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides. APL Photon. 3, 036103. https://doi.org/10.1063/1.5013662 (2018). es_ES
dc.description.references Cleary, J. W., Smith, E. M., Leedy, K. D., Grzybowski, G. & Guo, J. Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Opt. Mater. Express 8, 1231. https://doi.org/10.1364/OME.8.001231 (2018). es_ES
dc.description.references Xian, S. et al. Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Opt. Express 27, 28618. https://doi.org/10.1364/OE.27.028618 (2019). es_ES
dc.description.references Gui, Y. et al. Towards integrated metatronics: A holistic approach on precise optical and electrical properties of indium tin oxide. Sci. Rep. 9, 11279. https://doi.org/10.1038/s41598-019-47631-5 (2019). es_ES
dc.description.references Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017). es_ES
dc.description.references Parra, J., Hurtado, J., Griol, A. & Sanchis, P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express 28, 9393. https://doi.org/10.1364/OE.386959 (2020). es_ES
dc.description.references Sun, P. & Reano, R. M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18, 1315–1320. https://doi.org/10.1364/oe.18.008406 (2010). es_ES
dc.description.references Cocorullo, G. & Rendina, I. Thermo-optical modulation at 1.5 µm in silicon etalon. Electron. Lett. 28, 83–85. https://doi.org/10.1049/el:19920051 (1992). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem