Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Gómez, Jorge | es_ES |
dc.contributor.author | Pernice, Wolfram H. P. | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2022-05-20T18:05:51Z | |
dc.date.available | 2022-05-20T18:05:51Z | |
dc.date.issued | 2021-05-04 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182752 | |
dc.description.abstract | [EN] A wide variety of nanophotonic applications require controlling the optical phase without changing optical absorption, which in silicon (Si) photonics has been mostly pursued electrically. Here, we investigate the unique light¿matter interaction exhibited by epsilon-near-zero (ENZ) materials for all-optical phase control in nanophotonic silicon waveguides. Thermo-optic all-optical phase tuning is achieved using an ENZ material as a compact, low-loss, and efficient optical heat source. For a 10-¿m-long ENZ/Si waveguide, insertion loss below 0.5 dB for the transverse electric (TE) polarization is predicted together with a high control efficiency of ~0.107¿ mW¿1. Our proposal provides a new approach to achieve all-optical, on-chip, and low-loss phase tuning in silicon photonic circuits. | es_ES |
dc.description.sponsorship | This work is supported by Ministerio de Ciencia e Innovacion (PID2019-111460GB-I00, FPU17/04224) and Generalitat Valenciana (PROMETEO/2019/123). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | All-optical | es_ES |
dc.subject | Phase shifting | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject | Indium tin oxide | es_ES |
dc.subject | Epsilon-near-zero materials | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-021-88865-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Parra Gómez, J.; Pernice, WHP.; Sanchis Kilders, P. (2021). All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters. Scientific Reports. 11(1):1-9. https://doi.org/10.1038/s41598-021-88865-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-021-88865-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33947896 | es_ES |
dc.identifier.pmcid | PMC8096950 | es_ES |
dc.relation.pasarela | S\436704 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES | es_ES |
dc.description.references | Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216. https://doi.org/10.1038/s41586-020-2764-0 (2020). | es_ES |
dc.description.references | Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199. https://doi.org/10.1038/nature11727 (2013). | es_ES |
dc.description.references | Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446. https://doi.org/10.1038/nphoton.2017.93 (2017). | es_ES |
dc.description.references | Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539. https://doi.org/10.1038/s41566-018-0236-y (2018). | es_ES |
dc.description.references | Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312. https://doi.org/10.1364/OE.18.018312 (2010). | es_ES |
dc.description.references | Deng, H. & Bogaerts, W. Pure phase modulation based on a silicon plasma dispersion modulator. Opt. Express 27, 27191. https://doi.org/10.1364/oe.27.027191 (2019). | es_ES |
dc.description.references | Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202. https://doi.org/10.1038/nature04706 (2006). | es_ES |
dc.description.references | Berciano, M. et al. Fast linear electro-optic effect in a centrosymmetric semiconductor. Commun. Phys. 1, 64. https://doi.org/10.1038/s42005-018-0064-x (2018). | es_ES |
dc.description.references | Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206. https://doi.org/10.1038/nphoton.2017.14 (2017). | es_ES |
dc.description.references | Castellan, C. et al. Field-induced nonlinearities in silicon waveguides embedded in lateral p-n junctions. Front. Phys. 7, 1–9. https://doi.org/10.3389/fphy.2019.00104 (2019). | es_ES |
dc.description.references | Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019). | es_ES |
dc.description.references | Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 14, 256–262. https://doi.org/10.1038/s41566-020-0590-4 (2020). | es_ES |
dc.description.references | Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084. https://doi.org/10.1038/nature02921 (2004). | es_ES |
dc.description.references | Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3. https://doi.org/10.1063/1.2089185 (2005). | es_ES |
dc.description.references | Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246. https://doi.org/10.1038/nphoton.2008.31 (2008). | es_ES |
dc.description.references | Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511. https://doi.org/10.1021/nl9041017 (2010). | es_ES |
dc.description.references | Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187. https://doi.org/10.1038/nphoton.2009.268 (2010). | es_ES |
dc.description.references | Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483. https://doi.org/10.1038/nphoton.2010.89 (2010). | es_ES |
dc.description.references | Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 3, 396. https://doi.org/10.1364/OPTICA.3.000396 (2016). | es_ES |
dc.description.references | Gil-Molina, A. et al. Optical free-carrier generation in silicon nano-waveguides at 1550 nm. Appl. Phys. Lett. 112, 251104. https://doi.org/10.1063/1.5023589 (2018). | es_ES |
dc.description.references | Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater. 6, 1–36. https://doi.org/10.1002/adom.201701292 (2018). | es_ES |
dc.description.references | Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233. https://doi.org/10.1364/OPTICA.5.000233 (2018). | es_ES |
dc.description.references | Zhou, B., Li, E., Bo, Y. & Wang, A. X. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol. 38, 3338–3345. https://doi.org/10.1109/JLT.2020.2979192 (2020). | es_ES |
dc.description.references | Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics. Optica 7, 333. https://doi.org/10.1364/OPTICA.389437 (2020). | es_ES |
dc.description.references | Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Non-volatile epsilon-near-zero readout memory. Opt. Lett. 44, 3932. https://doi.org/10.1364/OL.44.003932 (2019). | es_ES |
dc.description.references | Parra, J., Olivares, I., Ramos, F. & Sanchis, P. Ultra-compact non-volatile Mach-Zehnder switch enabled by a high-mobility transparent conducting oxide. Opt. Lett. 45, 1503. https://doi.org/10.1364/OL.388363 (2020). | es_ES |
dc.description.references | Li, E. & Wang, A. X. Femto-Joule all-optical switching using epsilon-near-zero high-mobility conductive oxide. IEEE J. Select. Top. Quant. Electron. 27, 1–9. https://doi.org/10.1109/JSTQE.2020.3018104 (2021). | es_ES |
dc.description.references | Modest, M. F. Radiative Heat Transfer 3rd edn. (Elsevier Inc., 2013). | es_ES |
dc.description.references | Wu, K., Wang, Y., Qiu, C. & Chen, J. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res. 6, C22. https://doi.org/10.1364/PRJ.6.000C22 (2018). | es_ES |
dc.description.references | Sturlesi, B., Grajower, M., Mazurski, N. & Levy, U. Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides. APL Photon. 3, 036103. https://doi.org/10.1063/1.5013662 (2018). | es_ES |
dc.description.references | Cleary, J. W., Smith, E. M., Leedy, K. D., Grzybowski, G. & Guo, J. Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Opt. Mater. Express 8, 1231. https://doi.org/10.1364/OME.8.001231 (2018). | es_ES |
dc.description.references | Xian, S. et al. Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Opt. Express 27, 28618. https://doi.org/10.1364/OE.27.028618 (2019). | es_ES |
dc.description.references | Gui, Y. et al. Towards integrated metatronics: A holistic approach on precise optical and electrical properties of indium tin oxide. Sci. Rep. 9, 11279. https://doi.org/10.1038/s41598-019-47631-5 (2019). | es_ES |
dc.description.references | Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017). | es_ES |
dc.description.references | Parra, J., Hurtado, J., Griol, A. & Sanchis, P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express 28, 9393. https://doi.org/10.1364/OE.386959 (2020). | es_ES |
dc.description.references | Sun, P. & Reano, R. M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18, 1315–1320. https://doi.org/10.1364/oe.18.008406 (2010). | es_ES |
dc.description.references | Cocorullo, G. & Rendina, I. Thermo-optical modulation at 1.5 µm in silicon etalon. Electron. Lett. 28, 83–85. https://doi.org/10.1049/el:19920051 (1992). | es_ES |
upv.costeAPC | 2200 | es_ES |