- -

All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters

Mostrar el registro completo del ítem

Parra Gómez, J.; Pernice, WHP.; Sanchis Kilders, P. (2021). All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters. Scientific Reports. 11(1):1-9. https://doi.org/10.1038/s41598-021-88865-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182752

Ficheros en el ítem

Metadatos del ítem

Título: All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters
Autor: Parra Gómez, Jorge Pernice, Wolfram H. P. Sanchis Kilders, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] A wide variety of nanophotonic applications require controlling the optical phase without changing optical absorption, which in silicon (Si) photonics has been mostly pursued electrically. Here, we investigate the ...[+]
Palabras clave: All-optical , Phase shifting , Silicon photonics , Indium tin oxide , Epsilon-near-zero materials
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-021-88865-6
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-021-88865-6
Coste APC: 2200
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/
info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
Agradecimientos:
This work is supported by Ministerio de Ciencia e Innovacion (PID2019-111460GB-I00, FPU17/04224) and Generalitat Valenciana (PROMETEO/2019/123).
Tipo: Artículo

References

Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216. https://doi.org/10.1038/s41586-020-2764-0 (2020).

Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199. https://doi.org/10.1038/nature11727 (2013).

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446. https://doi.org/10.1038/nphoton.2017.93 (2017). [+]
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216. https://doi.org/10.1038/s41586-020-2764-0 (2020).

Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199. https://doi.org/10.1038/nature11727 (2013).

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446. https://doi.org/10.1038/nphoton.2017.93 (2017).

Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539. https://doi.org/10.1038/s41566-018-0236-y (2018).

Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312. https://doi.org/10.1364/OE.18.018312 (2010).

Deng, H. & Bogaerts, W. Pure phase modulation based on a silicon plasma dispersion modulator. Opt. Express 27, 27191. https://doi.org/10.1364/oe.27.027191 (2019).

Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202. https://doi.org/10.1038/nature04706 (2006).

Berciano, M. et al. Fast linear electro-optic effect in a centrosymmetric semiconductor. Commun. Phys. 1, 64. https://doi.org/10.1038/s42005-018-0064-x (2018).

Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206. https://doi.org/10.1038/nphoton.2017.14 (2017).

Castellan, C. et al. Field-induced nonlinearities in silicon waveguides embedded in lateral p-n junctions. Front. Phys. 7, 1–9. https://doi.org/10.3389/fphy.2019.00104 (2019).

Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019).

Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 14, 256–262. https://doi.org/10.1038/s41566-020-0590-4 (2020).

Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084. https://doi.org/10.1038/nature02921 (2004).

Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3. https://doi.org/10.1063/1.2089185 (2005).

Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246. https://doi.org/10.1038/nphoton.2008.31 (2008).

Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511. https://doi.org/10.1021/nl9041017 (2010).

Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187. https://doi.org/10.1038/nphoton.2009.268 (2010).

Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483. https://doi.org/10.1038/nphoton.2010.89 (2010).

Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 3, 396. https://doi.org/10.1364/OPTICA.3.000396 (2016).

Gil-Molina, A. et al. Optical free-carrier generation in silicon nano-waveguides at 1550 nm. Appl. Phys. Lett. 112, 251104. https://doi.org/10.1063/1.5023589 (2018).

Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater. 6, 1–36. https://doi.org/10.1002/adom.201701292 (2018).

Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233. https://doi.org/10.1364/OPTICA.5.000233 (2018).

Zhou, B., Li, E., Bo, Y. & Wang, A. X. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol. 38, 3338–3345. https://doi.org/10.1109/JLT.2020.2979192 (2020).

Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics. Optica 7, 333. https://doi.org/10.1364/OPTICA.389437 (2020).

Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Non-volatile epsilon-near-zero readout memory. Opt. Lett. 44, 3932. https://doi.org/10.1364/OL.44.003932 (2019).

Parra, J., Olivares, I., Ramos, F. & Sanchis, P. Ultra-compact non-volatile Mach-Zehnder switch enabled by a high-mobility transparent conducting oxide. Opt. Lett. 45, 1503. https://doi.org/10.1364/OL.388363 (2020).

Li, E. & Wang, A. X. Femto-Joule all-optical switching using epsilon-near-zero high-mobility conductive oxide. IEEE J. Select. Top. Quant. Electron. 27, 1–9. https://doi.org/10.1109/JSTQE.2020.3018104 (2021).

Modest, M. F. Radiative Heat Transfer 3rd edn. (Elsevier Inc., 2013).

Wu, K., Wang, Y., Qiu, C. & Chen, J. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res. 6, C22. https://doi.org/10.1364/PRJ.6.000C22 (2018).

Sturlesi, B., Grajower, M., Mazurski, N. & Levy, U. Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides. APL Photon. 3, 036103. https://doi.org/10.1063/1.5013662 (2018).

Cleary, J. W., Smith, E. M., Leedy, K. D., Grzybowski, G. & Guo, J. Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Opt. Mater. Express 8, 1231. https://doi.org/10.1364/OME.8.001231 (2018).

Xian, S. et al. Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Opt. Express 27, 28618. https://doi.org/10.1364/OE.27.028618 (2019).

Gui, Y. et al. Towards integrated metatronics: A holistic approach on precise optical and electrical properties of indium tin oxide. Sci. Rep. 9, 11279. https://doi.org/10.1038/s41598-019-47631-5 (2019).

Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017).

Parra, J., Hurtado, J., Griol, A. & Sanchis, P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express 28, 9393. https://doi.org/10.1364/OE.386959 (2020).

Sun, P. & Reano, R. M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18, 1315–1320. https://doi.org/10.1364/oe.18.008406 (2010).

Cocorullo, G. & Rendina, I. Thermo-optical modulation at 1.5 µm in silicon etalon. Electron. Lett. 28, 83–85. https://doi.org/10.1049/el:19920051 (1992).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem