Mostrar el registro sencillo del ítem
dc.contributor.author | Barguet, L. | es_ES |
dc.contributor.author | Romero-García, V. | es_ES |
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | García-Raffi, L. M. | es_ES |
dc.contributor.author | Sánchez Morcillo, Víctor José | es_ES |
dc.contributor.author | Groby, J.-P. | es_ES |
dc.date.accessioned | 2022-05-20T18:05:59Z | |
dc.date.available | 2022-05-20T18:05:59Z | |
dc.date.issued | 2021-01-12 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182756 | |
dc.description.abstract | [EN] We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically characterized, providing insights on this natural fiber entanglement due to turbulent flow. The Aegagropilae are then arranged on a principal cubic lattice. The band diagram and topology of this structure are analyzed, notably via Argand representation of its scattering elements. This fully natural sonic crystal exhibits excellent sound absorbing properties and thus represents a sustainable alternative that could outperform conventional acoustic materials. | es_ES |
dc.description.sponsorship | This article is based upon work from COST Action DENORMS CA15125, supported by COST(European Cooperation in Science and Technology). The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project, the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire, and the project PID2019-109175GB-C22 funded by the Spanish Ministry of Science and Innovation. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant "Juan de la Cierva - Incorporacion" (IJC2018-037897-I). The authors would like to thank V. Pagneux and R. Pico Vila for useful discussions and J. Barber and C. Dordoni for their help in collecting the samples. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-020-79982-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA15125/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2019-109175GB-C22//ONDAS DE SONIDO EN METAMATERIALES, METASUPERFICIES Y MEDIOS NO-HERMITICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Barguet, L.; Romero-García, V.; Jimenez, N.; García-Raffi, LM.; Sánchez Morcillo, VJ.; Groby, J. (2021). Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-020-79982-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-020-79982-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33436918 | es_ES |
dc.identifier.pmcid | PMC7803767 | es_ES |
dc.relation.pasarela | S\426608 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547. https://doi.org/10.1126/science.aat8297 (2018). | es_ES |
dc.description.references | Cannon, J. An exprimental investigation of Posidonia balls. Aquat. Bot. 6, 407–410 (1979). | es_ES |
dc.description.references | Brouzet, C., Verhille, G. & Le Gal, P. Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112, 074501 (2014). | es_ES |
dc.description.references | Verhille, G. & Bartoli, A. 3d conformation of a flexible fiber in a turbulent flow. Exp. Fluids 57, 117 (2016). | es_ES |
dc.description.references | Verhille, G., Moulinet, S., Vandenberghe, N., Adda-Bedia, M. & Le Gal, P. Structure and mechanics of aegagropilae fiber network. Proc. Natl. Acad. Sci. 114, 4607–4612. https://doi.org/10.1073/pnas.1620688114 (2017). | es_ES |
dc.description.references | Haddara, A. et al. Synergetic effect of posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites. Ind. Crops Prod. 121, 26–35 (2018). | es_ES |
dc.description.references | Vukusic, P. & Sambles, J. Photonic structures in biology. Nature 424, 852–855 (2004). | es_ES |
dc.description.references | Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018). | es_ES |
dc.description.references | Lagarrigue, C., Groby, J.-P. & Tournat, V. Sustainable sonic crystal made of resonating bamboo rods. J. Acoust. Soc. Am. 133, 247 (2013). | es_ES |
dc.description.references | Miniaci, M., Krushynska, A., Movchan, A. B., Bosia, F. & Pugno, N. M. Spider web-inspired acoustic metamaterials. Appl. Phys. Lett. 109, 071905. https://doi.org/10.1063/1.4961307 (2016). | es_ES |
dc.description.references | Huang, W., Schwan, L., Romero-García, V., Génevaux, J.-M. & Groby, J.-P. 3D-printed sound absorbing metafluid inspired by cereal straws. Sci. Rep. 9, 8496 (2019). | es_ES |
dc.description.references | Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W. & Holderied, M. W. Moth wings are acoustic metamaterials. Proc. Natl. Acad. Sci.https://doi.org/10.1073/pnas.2014531117 (2020). | es_ES |
dc.description.references | Sanchis, L. et al. Reflectance properties of two-dimensional sonic band gap crystals. J. Acoust. Soc. Am. 109, 2598–2605 (2001). | es_ES |
dc.description.references | Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V. & Staliunas, K. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Phys. Rev. B 75, 014304 (2007). | es_ES |
dc.description.references | Romero-García, V., Lagarrigue, C., Groby, J. .-P., Richoux, O. & Tournat, V. Tunability of band gaps and waveguides in periodic arrays of square-rod scatterers: theory and experimental realization. J. Phys. D Appl. Phys. 46, 305108 (2013). | es_ES |
dc.description.references | Khelif, A. et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003). | es_ES |
dc.description.references | Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902–4 (2002). | es_ES |
dc.description.references | Wu, L.-Y., Chen, L.-W. & Wang, R.C.-C. Dispersion characteristics of negative refraction sonic crystals. Physica B Condens. Matter 403, 3599–3603 (2008). | es_ES |
dc.description.references | Hughes, R. J. et al. Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice. J. Acoust. Soc. Am. 128, 2847–2856 (2010). | es_ES |
dc.description.references | Sánchez-Pérez, J., Rubio, C., Martínez-Sala, R., Sánchez-Grandia, R. & Gómez, V. Acoustic barriers based on periodic arrays of scatterers. Appl. Phys. Lett. 81, 5240 (2002). | es_ES |
dc.description.references | Alevizaki, A. et al. Phononic crystals of poroelastic spheres. Phys. Rev. B 94, 174306 (2019). | es_ES |
dc.description.references | Niskanen, M. et al. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements. J. Acoust. Soc. Am. 142, 2407–2418. https://doi.org/10.1121/1.5008742 (2017). | es_ES |
dc.description.references | Johnson, D. L., Koplik, J. & Dashen, R. Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987). | es_ES |
dc.description.references | Lafarge, D., Lemarinier, P., Allard, J.-F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995–2006 (1997). | es_ES |
dc.description.references | Tarnow, V. Calculation of the dynamic air flow resistivity of fibre materials. J. Acoust. Soc. Am. 102, 1680–1688 (1997). | es_ES |
dc.description.references | Castagnède, B., Aknine, A., Brouard, B. & Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 61, 173–182 (2000). | es_ES |
dc.description.references | Bourbié, T., Coussy, O. & Zinszner, B. Acoustique des Milieux Poreux (Acoustics of Porous Media), 35 (Editions Technip, Paris, 1986). | es_ES |
dc.description.references | Wood, R. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 4, 396–402 (1902). | es_ES |
dc.description.references | Fernández-Marín, A. A., Jiménez, N., Groby, J.-P., Sánchez-Dehesa, J. & Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl. Phys. Lett. 115, 061901. https://doi.org/10.1063/1.5109084 (2019). | es_ES |
dc.description.references | Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015). | es_ES |
dc.description.references | Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014). | es_ES |
dc.description.references | Jiménez, N., Romero García, V., Pagneux, V. & Groby, J. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 014205 (2017). | es_ES |
dc.description.references | Nicholson, A. & Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. IM–19, 377–382 (1970). | es_ES |
dc.description.references | https://www.comsol.fr/release/5.2. | es_ES |