- -

Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barguet, L. es_ES
dc.contributor.author Romero-García, V. es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.contributor.author Groby, J.-P. es_ES
dc.date.accessioned 2022-05-20T18:05:59Z
dc.date.available 2022-05-20T18:05:59Z
dc.date.issued 2021-01-12 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182756
dc.description.abstract [EN] We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically characterized, providing insights on this natural fiber entanglement due to turbulent flow. The Aegagropilae are then arranged on a principal cubic lattice. The band diagram and topology of this structure are analyzed, notably via Argand representation of its scattering elements. This fully natural sonic crystal exhibits excellent sound absorbing properties and thus represents a sustainable alternative that could outperform conventional acoustic materials. es_ES
dc.description.sponsorship This article is based upon work from COST Action DENORMS CA15125, supported by COST(European Cooperation in Science and Technology). The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project, the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire, and the project PID2019-109175GB-C22 funded by the Spanish Ministry of Science and Innovation. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant "Juan de la Cierva - Incorporacion" (IJC2018-037897-I). The authors would like to thank V. Pagneux and R. Pico Vila for useful discussions and J. Barber and C. Dordoni for their help in collecting the samples. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-79982-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-109175GB-C22//ONDAS DE SONIDO EN METAMATERIALES, METASUPERFICIES Y MEDIOS NO-HERMITICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Barguet, L.; Romero-García, V.; Jimenez, N.; García-Raffi, LM.; Sánchez Morcillo, VJ.; Groby, J. (2021). Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-020-79982-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-79982-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33436918 es_ES
dc.identifier.pmcid PMC7803767 es_ES
dc.relation.pasarela S\426608 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547. https://doi.org/10.1126/science.aat8297 (2018). es_ES
dc.description.references Cannon, J. An exprimental investigation of Posidonia balls. Aquat. Bot. 6, 407–410 (1979). es_ES
dc.description.references Brouzet, C., Verhille, G. & Le Gal, P. Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112, 074501 (2014). es_ES
dc.description.references Verhille, G. & Bartoli, A. 3d conformation of a flexible fiber in a turbulent flow. Exp. Fluids 57, 117 (2016). es_ES
dc.description.references Verhille, G., Moulinet, S., Vandenberghe, N., Adda-Bedia, M. & Le Gal, P. Structure and mechanics of aegagropilae fiber network. Proc. Natl. Acad. Sci. 114, 4607–4612. https://doi.org/10.1073/pnas.1620688114 (2017). es_ES
dc.description.references Haddara, A. et al. Synergetic effect of posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites. Ind. Crops Prod. 121, 26–35 (2018). es_ES
dc.description.references Vukusic, P. & Sambles, J. Photonic structures in biology. Nature 424, 852–855 (2004). es_ES
dc.description.references Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018). es_ES
dc.description.references Lagarrigue, C., Groby, J.-P. & Tournat, V. Sustainable sonic crystal made of resonating bamboo rods. J. Acoust. Soc. Am. 133, 247 (2013). es_ES
dc.description.references Miniaci, M., Krushynska, A., Movchan, A. B., Bosia, F. & Pugno, N. M. Spider web-inspired acoustic metamaterials. Appl. Phys. Lett. 109, 071905. https://doi.org/10.1063/1.4961307 (2016). es_ES
dc.description.references Huang, W., Schwan, L., Romero-García, V., Génevaux, J.-M. & Groby, J.-P. 3D-printed sound absorbing metafluid inspired by cereal straws. Sci. Rep. 9, 8496 (2019). es_ES
dc.description.references Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W. & Holderied, M. W. Moth wings are acoustic metamaterials. Proc. Natl. Acad. Sci.https://doi.org/10.1073/pnas.2014531117 (2020). es_ES
dc.description.references Sanchis, L. et al. Reflectance properties of two-dimensional sonic band gap crystals. J. Acoust. Soc. Am. 109, 2598–2605 (2001). es_ES
dc.description.references Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V. & Staliunas, K. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Phys. Rev. B 75, 014304 (2007). es_ES
dc.description.references Romero-García, V., Lagarrigue, C., Groby, J. .-P., Richoux, O. & Tournat, V. Tunability of band gaps and waveguides in periodic arrays of square-rod scatterers: theory and experimental realization. J. Phys. D Appl. Phys. 46, 305108 (2013). es_ES
dc.description.references Khelif, A. et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003). es_ES
dc.description.references Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902–4 (2002). es_ES
dc.description.references Wu, L.-Y., Chen, L.-W. & Wang, R.C.-C. Dispersion characteristics of negative refraction sonic crystals. Physica B Condens. Matter 403, 3599–3603 (2008). es_ES
dc.description.references Hughes, R. J. et al. Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice. J. Acoust. Soc. Am. 128, 2847–2856 (2010). es_ES
dc.description.references Sánchez-Pérez, J., Rubio, C., Martínez-Sala, R., Sánchez-Grandia, R. & Gómez, V. Acoustic barriers based on periodic arrays of scatterers. Appl. Phys. Lett. 81, 5240 (2002). es_ES
dc.description.references Alevizaki, A. et al. Phononic crystals of poroelastic spheres. Phys. Rev. B 94, 174306 (2019). es_ES
dc.description.references Niskanen, M. et al. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements. J. Acoust. Soc. Am. 142, 2407–2418. https://doi.org/10.1121/1.5008742 (2017). es_ES
dc.description.references Johnson, D. L., Koplik, J. & Dashen, R. Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987). es_ES
dc.description.references Lafarge, D., Lemarinier, P., Allard, J.-F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995–2006 (1997). es_ES
dc.description.references Tarnow, V. Calculation of the dynamic air flow resistivity of fibre materials. J. Acoust. Soc. Am. 102, 1680–1688 (1997). es_ES
dc.description.references Castagnède, B., Aknine, A., Brouard, B. & Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 61, 173–182 (2000). es_ES
dc.description.references Bourbié, T., Coussy, O. & Zinszner, B. Acoustique des Milieux Poreux (Acoustics of Porous Media), 35 (Editions Technip, Paris, 1986). es_ES
dc.description.references Wood, R. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 4, 396–402 (1902). es_ES
dc.description.references Fernández-Marín, A. A., Jiménez, N., Groby, J.-P., Sánchez-Dehesa, J. & Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl. Phys. Lett. 115, 061901. https://doi.org/10.1063/1.5109084 (2019). es_ES
dc.description.references Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015). es_ES
dc.description.references Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014). es_ES
dc.description.references Jiménez, N., Romero García, V., Pagneux, V. & Groby, J. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 014205 (2017). es_ES
dc.description.references Nicholson, A. & Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. IM–19, 377–382 (1970). es_ES
dc.description.references https://www.comsol.fr/release/5.2. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem