- -

Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres

Mostrar el registro completo del ítem

Barguet, L.; Romero-García, V.; Jimenez, N.; García-Raffi, LM.; Sánchez Morcillo, VJ.; Groby, J. (2021). Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-020-79982-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182756

Ficheros en el ítem

Metadatos del ítem

Título: Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres
Autor: Barguet, L. Romero-García, V. Jimenez, Noe García-Raffi, L. M. Sánchez Morcillo, Víctor José Groby, J.-P.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-79982-9
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-020-79982-9
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA15125/
info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/
info:eu-repo/grantAgreement/AEI//PID2019-109175GB-C22//ONDAS DE SONIDO EN METAMATERIALES, METASUPERFICIES Y MEDIOS NO-HERMITICOS/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/
Agradecimientos:
This article is based upon work from COST Action DENORMS CA15125, supported by COST(European Cooperation in Science and Technology). The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project, the ...[+]
Tipo: Artículo

References

Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547. https://doi.org/10.1126/science.aat8297 (2018).

Cannon, J. An exprimental investigation of Posidonia balls. Aquat. Bot. 6, 407–410 (1979).

Brouzet, C., Verhille, G. & Le Gal, P. Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112, 074501 (2014). [+]
Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547. https://doi.org/10.1126/science.aat8297 (2018).

Cannon, J. An exprimental investigation of Posidonia balls. Aquat. Bot. 6, 407–410 (1979).

Brouzet, C., Verhille, G. & Le Gal, P. Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112, 074501 (2014).

Verhille, G. & Bartoli, A. 3d conformation of a flexible fiber in a turbulent flow. Exp. Fluids 57, 117 (2016).

Verhille, G., Moulinet, S., Vandenberghe, N., Adda-Bedia, M. & Le Gal, P. Structure and mechanics of aegagropilae fiber network. Proc. Natl. Acad. Sci. 114, 4607–4612. https://doi.org/10.1073/pnas.1620688114 (2017).

Haddara, A. et al. Synergetic effect of posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites. Ind. Crops Prod. 121, 26–35 (2018).

Vukusic, P. & Sambles, J. Photonic structures in biology. Nature 424, 852–855 (2004).

Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).

Lagarrigue, C., Groby, J.-P. & Tournat, V. Sustainable sonic crystal made of resonating bamboo rods. J. Acoust. Soc. Am. 133, 247 (2013).

Miniaci, M., Krushynska, A., Movchan, A. B., Bosia, F. & Pugno, N. M. Spider web-inspired acoustic metamaterials. Appl. Phys. Lett. 109, 071905. https://doi.org/10.1063/1.4961307 (2016).

Huang, W., Schwan, L., Romero-García, V., Génevaux, J.-M. & Groby, J.-P. 3D-printed sound absorbing metafluid inspired by cereal straws. Sci. Rep. 9, 8496 (2019).

Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W. & Holderied, M. W. Moth wings are acoustic metamaterials. Proc. Natl. Acad. Sci.https://doi.org/10.1073/pnas.2014531117 (2020).

Sanchis, L. et al. Reflectance properties of two-dimensional sonic band gap crystals. J. Acoust. Soc. Am. 109, 2598–2605 (2001).

Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V. & Staliunas, K. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Phys. Rev. B 75, 014304 (2007).

Romero-García, V., Lagarrigue, C., Groby, J. .-P., Richoux, O. & Tournat, V. Tunability of band gaps and waveguides in periodic arrays of square-rod scatterers: theory and experimental realization. J. Phys. D Appl. Phys. 46, 305108 (2013).

Khelif, A. et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003).

Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902–4 (2002).

Wu, L.-Y., Chen, L.-W. & Wang, R.C.-C. Dispersion characteristics of negative refraction sonic crystals. Physica B Condens. Matter 403, 3599–3603 (2008).

Hughes, R. J. et al. Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice. J. Acoust. Soc. Am. 128, 2847–2856 (2010).

Sánchez-Pérez, J., Rubio, C., Martínez-Sala, R., Sánchez-Grandia, R. & Gómez, V. Acoustic barriers based on periodic arrays of scatterers. Appl. Phys. Lett. 81, 5240 (2002).

Alevizaki, A. et al. Phononic crystals of poroelastic spheres. Phys. Rev. B 94, 174306 (2019).

Niskanen, M. et al. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements. J. Acoust. Soc. Am. 142, 2407–2418. https://doi.org/10.1121/1.5008742 (2017).

Johnson, D. L., Koplik, J. & Dashen, R. Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987).

Lafarge, D., Lemarinier, P., Allard, J.-F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995–2006 (1997).

Tarnow, V. Calculation of the dynamic air flow resistivity of fibre materials. J. Acoust. Soc. Am. 102, 1680–1688 (1997).

Castagnède, B., Aknine, A., Brouard, B. & Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 61, 173–182 (2000).

Bourbié, T., Coussy, O. & Zinszner, B. Acoustique des Milieux Poreux (Acoustics of Porous Media), 35 (Editions Technip, Paris, 1986).

Wood, R. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 4, 396–402 (1902).

Fernández-Marín, A. A., Jiménez, N., Groby, J.-P., Sánchez-Dehesa, J. & Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl. Phys. Lett. 115, 061901. https://doi.org/10.1063/1.5109084 (2019).

Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).

Jiménez, N., Romero García, V., Pagneux, V. & Groby, J. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 014205 (2017).

Nicholson, A. & Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. IM–19, 377–382 (1970).

https://www.comsol.fr/release/5.2.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem