Mostrar el registro sencillo del ítem
dc.contributor.author | González Hernández, José | es_ES |
dc.contributor.author | Rodríguez Miranda, Enrique | es_ES |
dc.contributor.author | Guzmán Sánchez, José Luis | es_ES |
dc.contributor.author | Acién Fernández, Francisco Gabriel | es_ES |
dc.contributor.author | Visioli, Antonio | es_ES |
dc.date.accessioned | 2022-05-24T07:47:02Z | |
dc.date.available | 2022-05-24T07:47:02Z | |
dc.date.issued | 2022-04-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/182822 | |
dc.description.abstract | [EN] In the microlagae-based producion systems, in addition to pH and dissolved oxygen, other parameters that significantly affect microalgae growth are solar radiation and temperature. Inadequate temperature significantly reduces biomass productivity in photobioreactors and can even cause total culture collapse. Direct temperature control in large-scale open reactors is considered unfeasible due to the large amount of energy required, leaving only the option of using passive or semi-passive systems. This paper presents an indirect method for temperature optimization in these systems by varying the culture depth using a thermal balance model and weather forecasts. | es_ES |
dc.description.abstract | [ES] En los sistemas de producción de microalgas, además del pH y el oxígeno disuelto, otros parámetros que afectan de forma considerable al crecimiento de las microalgas son la radiación solar y la temperatura. La radiación solar no es controlable y es considerada como la principal perturbación del sistema. En relación a la temperatura, un valor inadecuado de la misma reduce de manera notoria la productividad de biomasa en los fotobioreactores y puede incluso causar el colapso total de los cultivos. El control directo de la temperatura en reactores abiertos a gran escala se considera inviable debido a la gran cantidad de energía requerida, por lo que se suele optar por la opción de usar sistemas pasivos o semipasivos. Este artículo presenta un método indirecto para la optimización de la temperatura en fotobioreactores de escala industrial haciendo uso de un modelo de balance térmico del sistema y de predicciones climáticas futuras. | es_ES |
dc.description.sponsorship | Este trabajo ha sido financiado con el Proyecto del Plan Nacional PID2020-112709RB-C21 del Ministerio de Ciencia, Innovación y Universidades. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Open reactors | es_ES |
dc.subject | Temperature optimization | es_ES |
dc.subject | Control | es_ES |
dc.subject | Microalgas | es_ES |
dc.subject | Reactores abiertos | es_ES |
dc.subject | Optimización de temperatura | es_ES |
dc.title | Optimización de temperatura en reactores raceway para la producción de microalgas mediante regulación de nivel | es_ES |
dc.title.alternative | Temperature optimization in microalgae raceway reactors by depth regulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.16586 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112709RB-C21/ES/MODELADO, CONTROL Y OPTIMIZACION BASADOS EN DATOS PARA LA PRODUCCION SOSTENIBLE DE BIOMASA EN UNA BIORREFINERIA DE MICROALGAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | González Hernández, J.; Rodríguez Miranda, E.; Guzmán Sánchez, JL.; Acién Fernández, FG.; Visioli, A. (2022). Optimización de temperatura en reactores raceway para la producción de microalgas mediante regulación de nivel. Revista Iberoamericana de Automática e Informática industrial. 19(2):164-173. https://doi.org/10.4995/riai.2022.16586 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.16586 | es_ES |
dc.description.upvformatpinicio | 164 | es_ES |
dc.description.upvformatpfin | 173 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\16586 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Barcelo-Villalobos, M., Gomez-Serrano, C., Sanchez-Zurano, A., Alameda-Garcia, L., Esteve-Maldonado, S., Pena, J., Acien, F. G., 2019. Variations of culture parameters in a pilot-scale thin-layer reactor and their influence on the performance of Scenedesmus almeriensis culture. Bioresource Technology Reports 6, 190 - 197. DOI: 10.1016/j.biteb.2019.03.007 https://doi.org/10.1016/j.biteb.2019.03.007 | es_ES |
dc.description.references | Bechet, Q., Laviale, M., Arsapin, N., Bonnefond, H., Bernard, O., 2017. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels 10, 136. DOI: 10.1186/s13068-017-0823-z https://doi.org/10.1186/s13068-017-0823-z | es_ES |
dc.description.references | Bechet, Q., Shilton, A., Guieysse, B., 2013. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances 31 (8), 1648 - 1663. DOI: 10.1016/j.biotechadv.2013.08.014 https://doi.org/10.1016/j.biotechadv.2013.08.014 | es_ES |
dc.description.references | Bernard, O., Remond, B., 2012. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresource Technology 123, 520 - 527. DOI: 10.1016/j.biortech.2012.07.022 https://doi.org/10.1016/j.biortech.2012.07.022 | es_ES |
dc.description.references | Camacho, F., Garcia, F., Fernandez, J. M., Chisti, Y., Molina, E., 2003. A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering 81(4), 459 - 473. DOI: 10.1002/bit.10492 https://doi.org/10.1002/bit.10492 | es_ES |
dc.description.references | De-Luca, R., Bechet, Q., Bezzo, F., Bernard, O., 2016. Optimal operation of algal ponds accounting for future meteorology. IFAC -PapersOnLine 49(7), 1062 - 1067. DOI: 10.1016/j.jprocont.2017.03.010 https://doi.org/10.1016/j.jprocont.2017.03.010 | es_ES |
dc.description.references | De-Luca, R., Bezzo, F., Bechet, Q., Bernard, O., 2017. Exploting meteorological forecast for the optimal operation of algal ponds. Journal of Process Control 55, 55 - 65. DOI: 10.1016/j.jprocont.2017.03.010 https://doi.org/10.1016/j.jprocont.2017.03.010 | es_ES |
dc.description.references | De-Luca, R., Trabuio, M., Barolo, M., Bezzo, F., 2018. Microalgae growth optimization in open ponds with uncertain weather data. Computers and Chemical Engineering 117, 410 - 419. DOI: 10.1016/j.compchemeng.2018.07.005 https://doi.org/10.1016/j.compchemeng.2018.07.005 | es_ES |
dc.description.references | Guzman, J. L., Acien, F. G., Berenguel, M., 2021. Modelling and control of microalgae production in industrial photobioreactors. Revista Iberoamericana de Automatica e Inform ' atica Industrial 18(1), 1 - 18. DOI: 10.4995/riai.2020.13604 https://doi.org/10.4995/riai.2020.13604 | es_ES |
dc.description.references | Huesemann, M., Crowe, B., Waller, P., Chavis, A., Hobbs, S., Edmundson, S., Wigmosta, M., 2016. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Research 13, 195 - 206. DOI: 10.1016/j.algal.2015.11.008 https://doi.org/10.1016/j.algal.2015.11.008 | es_ES |
dc.description.references | Hwan Ryu, K., Lee, J., Heo, S., Lee, J., 2019. Improved microalgae production by using a heat supplied open raceway pond. Industrial & Engineering Chemistry Research 58 (21), 9099 - 9108. DOI: 10.1021/acs.iecr.9b00986 https://doi.org/10.1021/acs.iecr.9b00986 | es_ES |
dc.description.references | Marchante, G., Acosta, A., Gonzalez, A., Zamarreno, J., Alvarez, V., 2021. Comfort constraints evaluation in predictive controller for energy efficiency. Revista Iberoamericana de Automatica e Informatica Industrial 18(2), 146 - 159. DOI: 10.4995/riai.2020.13937 https://doi.org/10.4995/riai.2020.13937 | es_ES |
dc.description.references | Molina, E., Garca, F., Sanchez, J. A., Fernandez, J. M., Acien, F. G., Contreras, A., 1994. A mathematical model of microalgal growth in light-limited chemostat culture. Chemical Technology and Biotechnology 61(2), 167 - 173. DOI: 10.1002/jctb.280610212 https://doi.org/10.1002/jctb.280610212 | es_ES |
dc.description.references | Nalley, J. O., O'Donnell, D. R., Litchman, E., 2018. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Research 35, 500 - 507. DOI: 10.1016/j.algal.2018.09.018 https://doi.org/10.1016/j.algal.2018.09.018 | es_ES |
dc.description.references | Pantano, M. N., Fernandez, M. C., Rodrıguez, L., Scaglia, G. J., 2021. Dynamic optimization based on fourier application to the biodiesel process. Revista Iberoamericana de Automatica e Informatica Industrial 18(1), 32 - 38. DOI: 10.4995/riai.2020.12920 https://doi.org/10.4995/riai.2020.12920 | es_ES |
dc.description.references | Pawlowski, A., Mendoza, J. L., Guzman, J. L., Berenguel, M., Acien, F. G., Dormido, S., 2015. Selective pH and dissolved oxygen control strategy for a raceway rector within an event-based approach. Control Engineering Practice 44, 209-218. DOI: 10.1016/j.conengprac.2015.08.004 https://doi.org/10.1016/j.conengprac.2015.08.004 | es_ES |
dc.description.references | Pooya, D., Bahri, P. A., Moheimani, N. R., 2018. Modeling the effect of temperature on microalgal growth under outdoor conditions. Computer Aided Chemical Engineering 43, 55 - 60. DOI: 10.1016/B978-0-444-64235-6.50012-7 https://doi.org/10.1016/B978-0-444-64235-6.50012-7 | es_ES |
dc.description.references | Ras, M., Steyer, J. P., Bernard, O., 2013. Temperature effect on microalgae: A crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology 12 (2), 153 - 164. DOI: 10.1007/s11157-013-9310-6 https://doi.org/10.1007/s11157-013-9310-6 | es_ES |
dc.description.references | Rodrıguez, E., Acien, F. G., Guzman, J. L., Berenguel, M., Visioli, A., 2021. A new model to analyze the temperature effect on the microalgae performance at large scale raceway reactors. Biotechnology & Bioengineering. DOI: 10.1002/bit.27617 https://doi.org/10.1002/bit.27617 | es_ES |
dc.description.references | Rodriguez, E., Beschi, M., Guzman, J. L., Berenguel, M., Visioli, A., 2019. Daytime/Nighttime event-based PI control for the pH of a microalgae raceway reactor. Processes 7(5), 247-263. DOI: 10.3390/pr7050247 https://doi.org/10.3390/pr7050247 | es_ES |
dc.description.references | Rodriguez, E., Guzman, J. L., Berenguel, M., Acien, F. G., Visioli, A., 2020. Diurnal and nocturnal pH control in microalgae raceway reactors by combining classical and event-based control approaches. Water Science & Technology 82(6), 1155 - 1165. DOI: 10.2166/wst.2020.260 https://doi.org/10.2166/wst.2020.260 | es_ES |
dc.description.references | Singh, S. P., Singh, P., 2015. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50, 431 - 444. DOI: 10.1016/j.rser.2015.05.024 https://doi.org/10.1016/j.rser.2015.05.024 | es_ES |
dc.description.references | Solimeno, A., Samso, R., Uggeti, E., Sialve, B., Steyer, J. P., Gabarro, A., Garcia, J., 2015. New mechanistic model to simulate microalgae growth. Algal Research 12, 350 - 358. DOI: 10.1016/j.algal.2015.09.008 https://doi.org/10.1016/j.algal.2015.09.008 | es_ES |
dc.description.references | van Esbroeck, E., 2018. Temperature control of microalgae cultivation under variable conditions. Netherlands MSc Thesis, Wageningen University & Research. | es_ES |
dc.description.references | Weatherbit API forecast:, . . https://www.weatherbit.io/ | es_ES |