- -

Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación

Mostrar el registro completo del ítem

Beristáin, JA.; Pérez, J. (2022). Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación. Revista Iberoamericana de Automática e Informática industrial. 19(2):199-209. https://doi.org/10.4995/riai.2022.14936

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182825

Ficheros en el ítem

Metadatos del ítem

Título: Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación
Otro titulo: Bidirectional three-phase DC-AC converter with high frequency isolation: modeling using switching functions
Autor: Beristáin, José Antonio Pérez, Javier
Fecha difusión:
Resumen:
[EN] The objective of this paper was to develop the modeling of a bidirectional high frequency isolation DC-AC converter. Two models were obtained: the switched model and the averaged model, which describe the dynamics of ...[+]


[ES] El objetivo de este artículo fue desarrollar el modelado de un convertidor CD-CA con aislamiento en alta frecuencia bidireccional. Se obtuvieron dos modelos: el modelo conmutado y el modelo promediado, los cuales ...[+]
Palabras clave: High-frequency-link isolation , Switching functions , Modelling , Bidirectional power flow , Aislamiento en alta frecuencia , Funciones de conmutación , Modelado , Flujo de potencia bidireccional
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.14936
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.14936
Agradecimientos:
Se agradece al Instituto Tecnológico de Sonora (ITSON) por los fondos proporcionados, a través de los programas PROFAPI y PFCE, en el desarrollo de este trabajo.
Tipo: Artículo

References

Chaudhury, T., & Kastha, D. (2020). A High Gain Multiport DC-DC Converter for Integrating Energy Storage Devices to DC Microgrid. IEEE Transactions on Power Electronics, 35(10), 10501-10514. https://doi.org/10.1109/TPEL.2020.2977909

Dos Santos Neto, P. J. (2020). Power Management Strategy based on Virtual Inertia for DC microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2986283

Hojabri, H. (2019). Unidirectional isolated high-frequency link DC/AC converter for grid integration of DC sources. IET Renewable Power Generation, 13(15), 2880-2887. https://doi.org/10.1049/iet-rpg.2019.0284 [+]
Chaudhury, T., & Kastha, D. (2020). A High Gain Multiport DC-DC Converter for Integrating Energy Storage Devices to DC Microgrid. IEEE Transactions on Power Electronics, 35(10), 10501-10514. https://doi.org/10.1109/TPEL.2020.2977909

Dos Santos Neto, P. J. (2020). Power Management Strategy based on Virtual Inertia for DC microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2986283

Hojabri, H. (2019). Unidirectional isolated high-frequency link DC/AC converter for grid integration of DC sources. IET Renewable Power Generation, 13(15), 2880-2887. https://doi.org/10.1049/iet-rpg.2019.0284

Huang, R., & Mazumder, S. K. (2009). A soft-switching scheme for an isolated dc/dc converter with pulsating dc output for a three-phase high-frequency-link PWM converter. IEEE Transactions on Power Electronics, 24(10), 2276-2288. https://doi.org/10.1109/08IAS.2008.303

Huynh, P. S. (2020). Direct AC-AC Active-Clamped Half-Bridge Converter for Inductive Charging Applications. IEEE Transactions on Power Electronics, 36(2), 1356-1365. https://doi.org/10.1109/TPEL.2020.3009395

Mayer, R., El Katel, M. B., & Oliveira, S. V. (2020). Multi-Phase Interleaved Bidirectional DC/DC Converter with Coupled Inductor for Electrified-Vehicle Applications. IEEE Transactions on Power Electronics, 36(3), 2533-2547. https://doi.org/10.1109/TPEL.2020.3015390

R. A. Teran G., J. P. (2018). Comparison of Three-Phase Grid-Connected Inverters Topologies for Reactive Power Compensation and PV Power Injection. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico. https://doi.org/10.1109/ROPEC.2018.8661353

Ramirez-Murillo, H. e. (2017). An efficiency comparison of fuel-cell hybrid systems based on the versatile buck-boost converter. IEEE Transactions on Power Electronics, 33( 2), 1237-1246. https://doi.org/10.1109/TPEL.2017.2678160

Salari, O. e. (2020). Reconfigurable Hybrid Energy Storage System for an Electric Vehicle DC/AC Inverter. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2993783

Sayed, M. A. (2017). PWM switching technique for three-phase bidirectional grid-tie DC-AC-AC converter with high-frequency isolation. IEEE Transactions on power electronics, 33(1), 845-858. https://doi.org/10.1109/TPEL.2017.2668441

Sha, D. e. (2011). A digitally controlled three-phase cycloconverter type high frequency ac link inverter using space vector modulation. Journal of Power Electronics, 11(1), 28-36. https://doi.org/10.6113/JPE.2011.11.1.028

Shim, J. W. (2020). Virtual Capacity of Hybrid Energy Storage Systems Using Adaptive State of Charge Range Control for Smoothing Renewable Intermittency. IEEE Access, 8, 126951-126964. https://doi.org/10.1109/ACCESS.2020.3008518

Teng, C. e. (2019). Distributed control strategy of hybrid energy storage system in the DC microgrid. The Journal of Engineering, 2019(16), 2851-2855. https://doi.org/10.1049/joe.2018.8493

Varajo, D. e. (2017). Modulation strategy for a single-stage bidirectional and isolated AC-DC matrix converter for energy storage systems. IEEE Transactions on Industrial Electronics, 65(4), 3458-3468. https://doi.org/10.1109/TIE.2017.2752123

Wang, X. e. (2020). A Novel Carrier-Based PWM Without Narrow Pulses Applying to High-Frequency Link Matrix Converter. IEEE Access, 8, 157654-157662. https://doi.org/10.1109/ACCESS.2020.3019086

Yan, Z. e. (2011). An integration SPWM strategy for high-frequency link matrix converter with adaptive commutation in one step based on de-re-coupling idea. IEEE Transactions on Industrial Electronics, 59(1), 116-128. https://doi.org/10.1109/TIE.2011.2158775

Zhao, S. e. (2018). Lithium-ion-capacitor-based distributed ups architecture for reactive power mitigation and phase balancing in datacenters. IEEE Transactions on Power Electronics, 34( 8), 7381-7396. https://doi.org/10.1109/TPEL.2018.2878682

Zhou, J. e. (2020). Design and Control of Power Fluctuation Delivery for Cell Capacitance Optimization in Multiport Modular Solid-State Transformers. IEEE Transactions on Power Electronics, 36(2), 1412-1427. https://doi.org/10.1109/TPEL.2020.3006956

Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on power electronics, 18(3), 814-822. https://doi.org/10.1109/TPEL.2003.810852

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem