dc.contributor.author |
da Cunha e Silva, Luiz Carlos
|
es_ES |
dc.contributor.author |
Andrade Romero, Jesus Franklin
|
es_ES |
dc.date.accessioned |
2022-05-24T09:25:40Z |
|
dc.date.available |
2022-05-24T09:25:40Z |
|
dc.date.issued |
2022-04-01 |
|
dc.identifier.issn |
1697-7912 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/182826 |
|
dc.description.abstract |
[EN] This work presents a hybrid modeling methodology based on dynamic response, filtering and identification techniques, in order to determine a ball mill representative model. In essence, we have provided models for electrical drive, mechanical reduction and load, without the need for physical decoupling. The electrical parameters are determined using state variable filtering, linear regression and recursive least square techniques. The mechanical parameters are identified considering the system acceleration time. A final adjustment stage considering the parameters set, is carried out using the nonlinear least squares method. Based on the ball mill complete model, a load torque estimator is proposed, using high-pass filters, and a load torque estimate. The numerical simulations, under different operating conditions, show suitable approximation with experimental results. Therefore, the proposed hybrid methodology, based on both dynamic modeling and signal analysis, has the potential to assist in the design for supervision and control systems of a ball mill. |
es_ES |
dc.description.abstract |
[ES] Este trabajo presenta una metodología híbrida de modelado basada en técnicas de respuesta dinámica, filtrado e identificación, considerando el dominio del tiempo y la frecuencia, para determinar el modelo representativo de un molino de bolas de acoplamiento fijo. Se proponen modelos para el accionamiento eléctrico, reductor mecánico y carga, sin la necesidad de desacoplamiento físico. Los parámetros eléctricos se determinan utilizando técnicas de filtrado de variable de estado, regresión lineal y mínimos cuadrados recursivos, y los parámetros mecánicos se identifican considerando solo el tiempo de aceleración del sistema. Se realiza un ajuste final del conjunto de parámetros mediante la técnica de mínimos cuadrados no lineales. Basado en el modelo completo del molino, se propone un estimador del par de carga, utilizando filtros de paso alto, y se presenta una estimación de la cantidad de carga del molino. Las simulaciones numéricas del modelo determinado, en diferentes condiciones de operación del molino, muestran una buena aproximación con resultados experimentales. Por lo tanto, la metodología híbrida propuesta, basada tanto en el modelado dinámico como en análisis de señales, presenta potencial para ayudar en el proyecto de procesos de supervisión y control del molino de bolas de acoplamiento fijo. |
es_ES |
dc.language |
Español |
es_ES |
dc.publisher |
Universitat Politècnica de València |
es_ES |
dc.relation.ispartof |
Revista Iberoamericana de Automática e Informática industrial |
es_ES |
dc.rights |
Reconocimiento - No comercial - Compartir igual (by-nc-sa) |
es_ES |
dc.subject |
System identification and parameter estimation |
es_ES |
dc.subject |
Mining |
es_ES |
dc.subject |
Hybrid systems modeling |
es_ES |
dc.subject |
Monitoring and supervision |
es_ES |
dc.subject |
Identificación de sistemas y estimación de parámetros |
es_ES |
dc.subject |
Minería |
es_ES |
dc.subject |
Modelado de sistemas híbridos |
es_ES |
dc.subject |
Monitorización y supervisión |
es_ES |
dc.title |
Metodología híbrida para la estimación del nivel de llenado en un molino de bolas |
es_ES |
dc.title.alternative |
Hybrid methodology for filling level estimation in ball mill |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.4995/riai.2021.13064 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.description.bibliographicCitation |
Da Cunha E Silva, LC.; Andrade Romero, JF. (2022). Metodología híbrida para la estimación del nivel de llenado en un molino de bolas. Revista Iberoamericana de Automática e Informática industrial. 19(2):210-220. https://doi.org/10.4995/riai.2021.13064 |
es_ES |
dc.description.accrualMethod |
OJS |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.4995/riai.2021.13064 |
es_ES |
dc.description.upvformatpinicio |
210 |
es_ES |
dc.description.upvformatpfin |
220 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
19 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.identifier.eissn |
1697-7920 |
|
dc.relation.pasarela |
OJS\13064 |
es_ES |
dc.description.references |
Castaldi, P., Tilli, A., 2005. Parameter estimation of induction motor at standstill with magnetic flux monitoring. IEEE Transactions on Control Systems Technology, v. 13, n. 3, p. 386-400. https://doi.org/10.1109/TCST.2004.841643 |
es_ES |
dc.description.references |
Dai, W., Zhou, P., Zhao, D., Lu, S. and Chai, T., 2016. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder technology, 288, pp.422-434. https://doi.org/10.1016/j.powtec.2015.11.032 |
es_ES |
dc.description.references |
Dell'Aquila, A., Gilibert, V., Lovecchio, F.S, Salvatore, L., 1994. Real-Time Estimation of Induction Motor Parameters by LSE. Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics. |
es_ES |
dc.description.references |
Eremenko, Y.I., Poleshchenko, D.A., Glushchenko, A.I., 2015. About Ball Mill Fill Level Monitoring System Development and Research on Its Efficiency. In: 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk, p. 1- 4. https://doi.org/10.1109/SIBCON.2015.7147324 |
es_ES |
dc.description.references |
Esteves, P. M., Stopa, M. M., Filho, B. J. C., Galery, R., 2015. Charge Behavior Analysis in Ball Mill by Using Estimated Torque. IEEE Transactions on Industry Applications, v. 51, n. 3. https://doi.org/10.1109/TIA.2014.2377372 |
es_ES |
dc.description.references |
Franchi, C. M, 2009. Inversores de Frequência - teoria e aplicação. 2ed. Érica: São Paulo. |
es_ES |
dc.description.references |
Fleury, A. W., 2007. Estudo Comparativo de Técnicas de Estimativa do Fluxo Estatórico de MIT. Dissertação (mestrado). Pós-Graduação em Engenharia Elétrica. Universidade Federal de Uberlândia |
es_ES |
dc.description.references |
Fuerstenau, D.W., Phatak, P.B., Kapur, P.C. and Abouzeid, A.Z., 2011. Simulation of the grinding of coarse/fine (heterogeneous) systems in a ball mill. International Journal of Mineral Processing, 99(1-4), pp.32-38. https://doi.org/10.1016/j.minpro.2011.02.003 |
es_ES |
dc.description.references |
Garnier, H., Young, P., 2004. Time-domain approaches to continuous-time model identification of dynamical systems from sampled data. Proceedings of the 2004 American Control Conference. https://doi.org/10.23919/ACC.2004.1383680 |
es_ES |
dc.description.references |
Holtz, J., Quan, J., 2003. Drift-and Parameter-Compensated Flux Estimator for Persistent Zero-Stator-Frequency Operation of Sensorless-Controlled Induction Motor. IEEE Transactions on Industry Aplications, v. 39, n. 4. https://doi.org/10.1109/TIA.2003.813726 |
es_ES |
dc.description.references |
Johansson, R., 1993. System Modeling and Identification. Prentice Hall: NJ. |
es_ES |
dc.description.references |
Kang, E. S., Guo, Y. G., Du, Y. Y., Zhao, L. H., 2006. Acoustic vibration signal processing and analysis in ball mill. In: 6th World Congress on Intelligent Control and Automation, Dalian, China, p. 6690 - 6693. |
es_ES |
dc.description.references |
King, R. P., 2001. Modeling and simulation of mineral processing systems. 1.ed. Department of Metallurgical Engineering, University of Utah, USA: Butterworth-Heinemann. Great Britain. |
es_ES |
dc.description.references |
Khamehchi, S., 2018. Identification of the Induction Motor Parameters at Standstill Including the Magnetic Saturation Characteristics. Dissertação (Mestrado). Aalto University. School of Electrical Engineering. Department of Electrical Engineering and Automation. |
es_ES |
dc.description.references |
Lee, S. H., Yoo, A., Lee, H. J., Yoon, Y. D, Han, B. M., 2017. Identification of induction motor parameters at standstill based on integral calculation. IEEE Transactions on Industry Applications, v. 53, n. 3, p. 2130-2139. https://doi.org/10.1109/TIA.2017.2650141 |
es_ES |
dc.description.references |
Leonhard, W. (2001). Control of Electrical Drives. 3ed. Spring Verlag. https://doi.org/10.1007/978-3-642-56649-3 |
es_ES |
dc.description.references |
Liu, Z., Chai, T., Yu, W., Tang, J., 2015. Multi-frequency Signal Modeling using Empirical Mode Decomposition and PCA with Application to Mill Load Estimation. Neurocomputing: Elsevier. https://doi.org/10.1016/j.neucom.2014.08.087 |
es_ES |
dc.description.references |
Luz, A. B., Sampaio, J. A., França, S. C. A., 2010. Tratamento de Minérios. 5ª ed. CETEM/MCT. Rio de Janeiro. |
es_ES |
dc.description.references |
Melero, M. G., Cano, J. M., Norniella, J., Pedrayes, F., Cabanas, M. F., 2014. Electric motors monitoring: An alternative to increase the efficiency of ball mills. In: International Conference on Renewable Energies and Power Quality (ICREPQ'14). Cordoba (Spain). https://doi.org/10.24084/repqj12.509 |
es_ES |
dc.description.references |
Mihalache, L., 2005. A Flux Estimator for Induction Motor Drives Based on Digital EMF Integration With Pré and Post High Pass Filtering. IEEE Apllied Electronics Conference and Exposition, p. 713-718, v.2. |
es_ES |
dc.description.references |
Nikander, J., 2009. Induction Motor Parameter Identification in Elevator Drive Modernization. Master of Science in Technology. Helsinki University of Technology. Faculty of Electronics, Communications and Automation. |
es_ES |
dc.description.references |
Peng, H., Minping, J., Binglin, Z., 2010. New Method to Measure the Fill Level of the Ball Mill I - Theoretical Analysis and DEM Simulation. Chinese Journal of Mechanical Engineering, v.23, n.3, p.1-8. https://doi.org/10.3901/CJME.2010.04.460 |
es_ES |
dc.description.references |
Ranta, M., 2013. Dynamic induction machine models including magnetic saturation and iron losses. Tese de Doutorado. Aalto University, School of Electrical Engineering, Department of Electrical Engineering. |
es_ES |
dc.description.references |
Sena, A. P. C., 2011. Estratégia para Estimação do conjugado eletromagnético de motores de indução. Dissertação de mestrado. Centro de Tecnologia. Programa de Pós-Graduação em Engenharia Mecânica. Universidade Federal da Paraíba, João Pessoa. |
es_ES |
dc.description.references |
Severino, P.B., 2005. Um Estudo de Estimativa de Fluxo e Conjugado em Motores de Indução Trifásicos - implementação utilizando DSP. Dissertação (mestrado). Pós-Graduação em Engenharia Elétrica. Universidade Federal de Uberlândia. |
es_ES |
dc.description.references |
Seyoum, D., Grantham, C., Rahman, M. F., 2003. Simplified Flux Estimation for Control Application in Induction Machines. In: Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, v.2, p. 691-695. |
es_ES |
dc.description.references |
Shen, G., Wang, K., Yao, W., Lee, K., Lu, Z., 2013. DC biased stimulation method for induction motor parameters identification at standstill without inverter nonlinearity compensation. In: 2013 IEEE Energy Conversion Congress and Exposition, p. 5123-5130. https://doi.org/10.1109/ECCE.2013.6647393 |
es_ES |
dc.description.references |
Shin, M. H., Hyun, D. S., Cho, S. B., Choe, S. Y., 2000. An Improved Stator Flux Estimation for Speed Sensorless Stator Orientation Control of Induction Motor. IEEE Transactions on Power Eletronics, v. 15, Isse: 2, p. 312-318. https://doi.org/10.1109/63.838104 |
es_ES |
dc.description.references |
Tang, J., Zhao, L. J., Zhou, J. W., Yue, H., Chai, T. Y., 2010a. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Minerals Engineering, n.23, p.720-730: Elsevier. https://doi.org/10.1016/j.mineng.2010.05.001 |
es_ES |
dc.description.references |
Tang, J., Yu, W., Zhao, L., Yue, H., Chai, T., 2010b. Modeling of Operating Parameters for Wet Ball Mill by Modified GA-KPLS. In: 3th International Workshop on Advanced Computational Intelligence. August 25-27, p.282 287. Suzhou, Jiangsu, China. https://doi.org/10.1109/IWACI.2010.5585151 |
es_ES |
dc.description.references |
Tie, M., Bi, J. and Fan, Y., 2007, June. Hybrid intelligent modeling approach for the ball mill grinding process. In International Symposium on Neural Networks (pp. 609-617). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_72 |
es_ES |
dc.description.references |
Umans, S.D., 2014. Electric machinery. McGrew-Hill Series in Electrical Engineering. |
es_ES |
dc.description.references |
Wang, H., Jia, M. P., Huang, P., Chen, Z. L., 2009. A study on a new algorithm to optimize ball mill system based on modeling and GA. Energy Conversion and Management, n.51, p.846-850: Elsevier. https://doi.org/10.1016/j.enconman.2009.11.020 |
es_ES |
dc.description.references |
Wang, K., Yao, W., Chen, B., Shen, G., Lee, K., Lu, Z., 2015. Magnetizing curve identification for induction motors at standstill without assumption of analytical curve functions. IEEE Transactions on Industrial Electronics, v. 62, n. 4, p. 2144-2155. https://doi.org/10.1109/TIE.2014.2354012 |
es_ES |
dc.description.references |
Zerbo, M., Sicard, P. and Ba-Razzouk, A., 2005, May. Accurate adaptive integration algorithms for induction machine drive over a wide speed range. In IEEE International Conference on Electric Machines and Drives, 2005. (pp. 1082-1088). IEEE. https://doi.org/10.1109/IEMDC.2005.195856 |
es_ES |
dc.description.references |
Zhao, L., Tang, J., Yu, W., Yue, H., Chai, T., 2010. Modeling of Mill Load for Wet Ball Mill via GA and SVM Based on Spectral Feature. IEEE, p.874-879. https://doi.org/10.1109/BICTA.2010.5645241 |
es_ES |
dc.description.references |
Zhao, L., Feng, X., Yuan, D., 2012. Soft Sensor Modeling of Mill Load Based on Feature Selection Using Synergy Interval PLS. Journal of Theoretical and Applied Information technology. |
es_ES |
dc.description.references |
Zhao, L., Tang, J., Zheng, W., 2012. Ensemble Modeling of Mill Load Based on Empirical Mode Decomposition and Partial Least Squares. Journal of Theoretical and Applied Information Technology, v.45, n.1, p. 179-191. |
es_ES |