- -

Metodología híbrida para la estimación del nivel de llenado en un molino de bolas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metodología híbrida para la estimación del nivel de llenado en un molino de bolas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author da Cunha e Silva, Luiz Carlos es_ES
dc.contributor.author Andrade Romero, Jesus Franklin es_ES
dc.date.accessioned 2022-05-24T09:25:40Z
dc.date.available 2022-05-24T09:25:40Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182826
dc.description.abstract [EN] This work presents a hybrid modeling methodology based on dynamic response, filtering and identification techniques, in order to determine a ball mill representative model. In essence, we have provided models for electrical drive, mechanical reduction and load, without the need for physical decoupling. The electrical parameters are determined using state variable filtering, linear regression and recursive least square techniques. The mechanical parameters are identified considering the system acceleration time. A final adjustment stage considering the parameters set, is carried out using the nonlinear least squares method. Based on the ball mill complete model, a load torque estimator is proposed, using high-pass filters, and a load torque estimate. The numerical simulations, under different operating conditions, show suitable approximation with experimental results. Therefore, the proposed hybrid methodology, based on both dynamic modeling and signal analysis, has the potential to assist in the design for supervision and control systems of a ball mill. es_ES
dc.description.abstract [ES] Este trabajo presenta una metodología híbrida de modelado basada en técnicas de respuesta dinámica, filtrado e identificación, considerando el dominio del tiempo y la frecuencia, para determinar el modelo representativo de un molino de bolas de acoplamiento fijo. Se proponen modelos para el accionamiento eléctrico, reductor mecánico y carga, sin la necesidad de desacoplamiento físico. Los parámetros eléctricos se determinan utilizando técnicas de filtrado de variable de estado, regresión lineal y mínimos cuadrados recursivos, y los parámetros mecánicos se identifican considerando solo el tiempo de aceleración del sistema. Se realiza un ajuste final del conjunto de parámetros mediante la técnica de mínimos cuadrados no lineales. Basado en el modelo completo del molino, se propone un estimador del par de carga, utilizando filtros de paso alto, y se presenta una estimación de la cantidad de carga del molino. Las simulaciones numéricas del modelo determinado, en diferentes condiciones de operación del molino, muestran una buena aproximación con resultados experimentales. Por lo tanto, la metodología híbrida propuesta, basada tanto en el modelado dinámico como en análisis de señales, presenta potencial para ayudar en el proyecto de procesos de supervisión y control del molino de bolas de acoplamiento fijo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject System identification and parameter estimation es_ES
dc.subject Mining es_ES
dc.subject Hybrid systems modeling es_ES
dc.subject Monitoring and supervision es_ES
dc.subject Identificación de sistemas y estimación de parámetros es_ES
dc.subject Minería es_ES
dc.subject Modelado de sistemas híbridos es_ES
dc.subject Monitorización y supervisión es_ES
dc.title Metodología híbrida para la estimación del nivel de llenado en un molino de bolas es_ES
dc.title.alternative Hybrid methodology for filling level estimation in ball mill es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.13064
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Da Cunha E Silva, LC.; Andrade Romero, JF. (2022). Metodología híbrida para la estimación del nivel de llenado en un molino de bolas. Revista Iberoamericana de Automática e Informática industrial. 19(2):210-220. https://doi.org/10.4995/riai.2021.13064 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.13064 es_ES
dc.description.upvformatpinicio 210 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13064 es_ES
dc.description.references Castaldi, P., Tilli, A., 2005. Parameter estimation of induction motor at standstill with magnetic flux monitoring. IEEE Transactions on Control Systems Technology, v. 13, n. 3, p. 386-400. https://doi.org/10.1109/TCST.2004.841643 es_ES
dc.description.references Dai, W., Zhou, P., Zhao, D., Lu, S. and Chai, T., 2016. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder technology, 288, pp.422-434. https://doi.org/10.1016/j.powtec.2015.11.032 es_ES
dc.description.references Dell'Aquila, A., Gilibert, V., Lovecchio, F.S, Salvatore, L., 1994. Real-Time Estimation of Induction Motor Parameters by LSE. Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics. es_ES
dc.description.references Eremenko, Y.I., Poleshchenko, D.A., Glushchenko, A.I., 2015. About Ball Mill Fill Level Monitoring System Development and Research on Its Efficiency. In: 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk, p. 1- 4. https://doi.org/10.1109/SIBCON.2015.7147324 es_ES
dc.description.references Esteves, P. M., Stopa, M. M., Filho, B. J. C., Galery, R., 2015. Charge Behavior Analysis in Ball Mill by Using Estimated Torque. IEEE Transactions on Industry Applications, v. 51, n. 3. https://doi.org/10.1109/TIA.2014.2377372 es_ES
dc.description.references Franchi, C. M, 2009. Inversores de Frequência - teoria e aplicação. 2ed. Érica: São Paulo. es_ES
dc.description.references Fleury, A. W., 2007. Estudo Comparativo de Técnicas de Estimativa do Fluxo Estatórico de MIT. Dissertação (mestrado). Pós-Graduação em Engenharia Elétrica. Universidade Federal de Uberlândia es_ES
dc.description.references Fuerstenau, D.W., Phatak, P.B., Kapur, P.C. and Abouzeid, A.Z., 2011. Simulation of the grinding of coarse/fine (heterogeneous) systems in a ball mill. International Journal of Mineral Processing, 99(1-4), pp.32-38. https://doi.org/10.1016/j.minpro.2011.02.003 es_ES
dc.description.references Garnier, H., Young, P., 2004. Time-domain approaches to continuous-time model identification of dynamical systems from sampled data. Proceedings of the 2004 American Control Conference. https://doi.org/10.23919/ACC.2004.1383680 es_ES
dc.description.references Holtz, J., Quan, J., 2003. Drift-and Parameter-Compensated Flux Estimator for Persistent Zero-Stator-Frequency Operation of Sensorless-Controlled Induction Motor. IEEE Transactions on Industry Aplications, v. 39, n. 4. https://doi.org/10.1109/TIA.2003.813726 es_ES
dc.description.references Johansson, R., 1993. System Modeling and Identification. Prentice Hall: NJ. es_ES
dc.description.references Kang, E. S., Guo, Y. G., Du, Y. Y., Zhao, L. H., 2006. Acoustic vibration signal processing and analysis in ball mill. In: 6th World Congress on Intelligent Control and Automation, Dalian, China, p. 6690 - 6693. es_ES
dc.description.references King, R. P., 2001. Modeling and simulation of mineral processing systems. 1.ed. Department of Metallurgical Engineering, University of Utah, USA: Butterworth-Heinemann. Great Britain. es_ES
dc.description.references Khamehchi, S., 2018. Identification of the Induction Motor Parameters at Standstill Including the Magnetic Saturation Characteristics. Dissertação (Mestrado). Aalto University. School of Electrical Engineering. Department of Electrical Engineering and Automation. es_ES
dc.description.references Lee, S. H., Yoo, A., Lee, H. J., Yoon, Y. D, Han, B. M., 2017. Identification of induction motor parameters at standstill based on integral calculation. IEEE Transactions on Industry Applications, v. 53, n. 3, p. 2130-2139. https://doi.org/10.1109/TIA.2017.2650141 es_ES
dc.description.references Leonhard, W. (2001). Control of Electrical Drives. 3ed. Spring Verlag. https://doi.org/10.1007/978-3-642-56649-3 es_ES
dc.description.references Liu, Z., Chai, T., Yu, W., Tang, J., 2015. Multi-frequency Signal Modeling using Empirical Mode Decomposition and PCA with Application to Mill Load Estimation. Neurocomputing: Elsevier. https://doi.org/10.1016/j.neucom.2014.08.087 es_ES
dc.description.references Luz, A. B., Sampaio, J. A., França, S. C. A., 2010. Tratamento de Minérios. 5ª ed. CETEM/MCT. Rio de Janeiro. es_ES
dc.description.references Melero, M. G., Cano, J. M., Norniella, J., Pedrayes, F., Cabanas, M. F., 2014. Electric motors monitoring: An alternative to increase the efficiency of ball mills. In: International Conference on Renewable Energies and Power Quality (ICREPQ'14). Cordoba (Spain). https://doi.org/10.24084/repqj12.509 es_ES
dc.description.references Mihalache, L., 2005. A Flux Estimator for Induction Motor Drives Based on Digital EMF Integration With Pré and Post High Pass Filtering. IEEE Apllied Electronics Conference and Exposition, p. 713-718, v.2. es_ES
dc.description.references Nikander, J., 2009. Induction Motor Parameter Identification in Elevator Drive Modernization. Master of Science in Technology. Helsinki University of Technology. Faculty of Electronics, Communications and Automation. es_ES
dc.description.references Peng, H., Minping, J., Binglin, Z., 2010. New Method to Measure the Fill Level of the Ball Mill I - Theoretical Analysis and DEM Simulation. Chinese Journal of Mechanical Engineering, v.23, n.3, p.1-8. https://doi.org/10.3901/CJME.2010.04.460 es_ES
dc.description.references Ranta, M., 2013. Dynamic induction machine models including magnetic saturation and iron losses. Tese de Doutorado. Aalto University, School of Electrical Engineering, Department of Electrical Engineering. es_ES
dc.description.references Sena, A. P. C., 2011. Estratégia para Estimação do conjugado eletromagnético de motores de indução. Dissertação de mestrado. Centro de Tecnologia. Programa de Pós-Graduação em Engenharia Mecânica. Universidade Federal da Paraíba, João Pessoa. es_ES
dc.description.references Severino, P.B., 2005. Um Estudo de Estimativa de Fluxo e Conjugado em Motores de Indução Trifásicos - implementação utilizando DSP. Dissertação (mestrado). Pós-Graduação em Engenharia Elétrica. Universidade Federal de Uberlândia. es_ES
dc.description.references Seyoum, D., Grantham, C., Rahman, M. F., 2003. Simplified Flux Estimation for Control Application in Induction Machines. In: Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, v.2, p. 691-695. es_ES
dc.description.references Shen, G., Wang, K., Yao, W., Lee, K., Lu, Z., 2013. DC biased stimulation method for induction motor parameters identification at standstill without inverter nonlinearity compensation. In: 2013 IEEE Energy Conversion Congress and Exposition, p. 5123-5130. https://doi.org/10.1109/ECCE.2013.6647393 es_ES
dc.description.references Shin, M. H., Hyun, D. S., Cho, S. B., Choe, S. Y., 2000. An Improved Stator Flux Estimation for Speed Sensorless Stator Orientation Control of Induction Motor. IEEE Transactions on Power Eletronics, v. 15, Isse: 2, p. 312-318. https://doi.org/10.1109/63.838104 es_ES
dc.description.references Tang, J., Zhao, L. J., Zhou, J. W., Yue, H., Chai, T. Y., 2010a. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Minerals Engineering, n.23, p.720-730: Elsevier. https://doi.org/10.1016/j.mineng.2010.05.001 es_ES
dc.description.references Tang, J., Yu, W., Zhao, L., Yue, H., Chai, T., 2010b. Modeling of Operating Parameters for Wet Ball Mill by Modified GA-KPLS. In: 3th International Workshop on Advanced Computational Intelligence. August 25-27, p.282 287. Suzhou, Jiangsu, China. https://doi.org/10.1109/IWACI.2010.5585151 es_ES
dc.description.references Tie, M., Bi, J. and Fan, Y., 2007, June. Hybrid intelligent modeling approach for the ball mill grinding process. In International Symposium on Neural Networks (pp. 609-617). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_72 es_ES
dc.description.references Umans, S.D., 2014. Electric machinery. McGrew-Hill Series in Electrical Engineering. es_ES
dc.description.references Wang, H., Jia, M. P., Huang, P., Chen, Z. L., 2009. A study on a new algorithm to optimize ball mill system based on modeling and GA. Energy Conversion and Management, n.51, p.846-850: Elsevier. https://doi.org/10.1016/j.enconman.2009.11.020 es_ES
dc.description.references Wang, K., Yao, W., Chen, B., Shen, G., Lee, K., Lu, Z., 2015. Magnetizing curve identification for induction motors at standstill without assumption of analytical curve functions. IEEE Transactions on Industrial Electronics, v. 62, n. 4, p. 2144-2155. https://doi.org/10.1109/TIE.2014.2354012 es_ES
dc.description.references Zerbo, M., Sicard, P. and Ba-Razzouk, A., 2005, May. Accurate adaptive integration algorithms for induction machine drive over a wide speed range. In IEEE International Conference on Electric Machines and Drives, 2005. (pp. 1082-1088). IEEE. https://doi.org/10.1109/IEMDC.2005.195856 es_ES
dc.description.references Zhao, L., Tang, J., Yu, W., Yue, H., Chai, T., 2010. Modeling of Mill Load for Wet Ball Mill via GA and SVM Based on Spectral Feature. IEEE, p.874-879. https://doi.org/10.1109/BICTA.2010.5645241 es_ES
dc.description.references Zhao, L., Feng, X., Yuan, D., 2012. Soft Sensor Modeling of Mill Load Based on Feature Selection Using Synergy Interval PLS. Journal of Theoretical and Applied Information technology. es_ES
dc.description.references Zhao, L., Tang, J., Zheng, W., 2012. Ensemble Modeling of Mill Load Based on Empirical Mode Decomposition and Partial Least Squares. Journal of Theoretical and Applied Information Technology, v.45, n.1, p. 179-191. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem