- -

Análisis multi-objetivo del problema de asignación del buffer con meta-modelos de simulación y una metaheurística híbrida

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis multi-objetivo del problema de asignación del buffer con meta-modelos de simulación y una metaheurística híbrida

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Vázquez, José Omar es_ES
dc.contributor.author Hernández-González, Salvador es_ES
dc.contributor.author Hernández-Vázquez, José Israel es_ES
dc.contributor.author Jiménez-García, José Alfredo es_ES
dc.contributor.author Hernández-Ripalda, Manuel Darío es_ES
dc.date.accessioned 2022-05-24T09:29:10Z
dc.date.available 2022-05-24T09:29:10Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182827
dc.description.abstract [EN] This article presents a multi-objective formulation of the buffer allocation problem (BAP) in a serial-parallel production line, which aims to maximize the throughput rate and minimize the total cost of the allocation of buffers. Three case studies involving operating conditions are analyzed: reliable, unreliable and reprocesses. Process times, times between failures and repair times, consider distribution functions: Exponential, Normal and Weibull. The evaluation method used in this document implies simulation meta-models constructed from experiment designs and production line simulations. On the other hand, the optimization method implemented is a hybrid metaheuristic of Genetic Algorithms and Simulated Annealing. The results report the allocation of buffers in the case studies, their impact on the objectives and the computational efficiency of the proposed hybrid algorithm. es_ES
dc.description.abstract [ES] Este artículo presenta una formulación multi-objetivo del problema de asignación del buffer (BAP, por sus siglas en inglés) en una línea de producción paralela en serie, que pretende maximizar la tasa promedio de producción y minimizar el costo total de la asignación de buffers. Se analizan tres casos de estudio que involucran condiciones de operación: confiables, no confiables y reprocesos. Los tiempos de proceso, tiempos entre fallas y tiempos de reparación, consideran funciones de distribución: Exponencial, Normal y Weibull. El método de evaluación empleado en este documento, implica meta-modelos de simulación construidos a partir de diseños de experimentos y simulaciones de la línea de producción; por su parte, el método de optimización implementado, es una metaheurística híbrida de Algoritmos Genéticos (AG) y Recocido Simulado (RS). Los resultados reportan la asignación de buffers en los casos de estudio, su impacto en los objetivos y la eficiencia computacional del algoritmo híbrido propuesto. es_ES
dc.description.sponsorship Se agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el financiamiento de esta investigación con número de registro CVU: 375571; y al Tecnológico Nacional de México / Instituto Tecnológico de Celaya, por el apoyo brindado. Finalmente, un reconocimiento a Juana Cinthia Lizbeth Nava Torres, Rafael Paniagua Soto y Juan Pablo Gallardo Ochoa por su ayuda en la fase de programación. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Buffer allocation problem (BAP) es_ES
dc.subject Meta-models es_ES
dc.subject Hybrid metaheuristic es_ES
dc.subject Optimization es_ES
dc.subject Production line es_ES
dc.subject Problema de asignación del buffer es_ES
dc.subject Meta-modelos es_ES
dc.subject Metaheurística híbrida es_ES
dc.subject Optimización es_ES
dc.subject Línea de producción es_ES
dc.title Análisis multi-objetivo del problema de asignación del buffer con meta-modelos de simulación y una metaheurística híbrida es_ES
dc.title.alternative Multi-objective analysis of the buffer allocation problem with simulation meta-models and a hybrid metaheuristic es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.15731
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//375571/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández-Vázquez, JO.; Hernández-González, S.; Hernández-Vázquez, JI.; Jiménez-García, JA.; Hernández-Ripalda, MD. (2022). Análisis multi-objetivo del problema de asignación del buffer con meta-modelos de simulación y una metaheurística híbrida. Revista Iberoamericana de Automática e Informática industrial. 19(2):221-232. https://doi.org/10.4995/riai.2021.15731 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.15731 es_ES
dc.description.upvformatpinicio 221 es_ES
dc.description.upvformatpfin 232 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\15731 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Tecnológico Nacional de México es_ES
dc.description.references Abdul-Kader, W., Ganjavi, O., & Baki, F. (2011). A nonlinear model for optimizing the performance of a multi-product production line. International Transactions in Operational Research, 18(5), 561-577. https://doi.org/10.1111/j.1475-3995.2011.00814.x es_ES
dc.description.references Alaouchiche, Y., Ouazene, Y. & Yalaoui, F. (2021). Energy-efficient buffer allocation problem in unreliable production lines. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-021-06971-1 es_ES
dc.description.references Alfieri, A., Matta, A., & Pastore, E. (2020). The time buffer approximated Buffer Allocation Problem: A row-column generation approach. Computers and Operations Research, 115, 104835. https://doi.org/10.1016/j.cor.2019.104835 es_ES
dc.description.references Amiri, M., & Mohtashami, A. (2012). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. International Journal of Advanced Manufacturing Technology, 62(1-4), 371-383. https://doi.org/10.1007/s00170-011-3802-8 es_ES
dc.description.references Ariyani, A. K., Mahmudy, W. F., & Anggodo, Y. P. (2018). Hybrid genetic algorithms and simulated annealing for multi-trip vehicle routing problem with time windows. International Journal of Electrical and Computer Engineering, 8(6), 4713-4723. https://doi.org/10.11591/ijece.v8i6.pp4713-4723 es_ES
dc.description.references Bamporiki, T., Bekker, J., & Yoon, M. (2019). Using a discrete-event, simulation optimisation optimiser to solve a stochastic multi-objective NP-hard problem. International Conference on Competitive Manufacturing, (February). es_ES
dc.description.references Bekker, J. (2013). Multi-objective buffer space allocation with the cross-entropy method. International Journal of Simulation Modelling, 12(1), 50-61. https://doi.org/10.2507/IJSIMM12(1)5.228 es_ES
dc.description.references Blum, C., Blesa Aguilera, M. J., Roli, A., & Sampels, M. (2008). Hybrid metaheuristics an emerging approach to optimization. Berlin: Springer. https://doi.org/10.1007/978-3-540-78295-7 es_ES
dc.description.references Chehade, H., Yalaoui, F., Amodeo, L., & Dugardin, F. (2010). Buffers sizing in assembly lines using a lorenz multiobjective ant colony optimization algorithm. 2010 International Conference on Machine and Web Intelligence, ICMWI 2010 - Proceedings, (2), 283-287. https://doi.org/10.1109/ICMWI.2010.5647916 es_ES
dc.description.references Cruz, F. R. B., Kendall, G., While, L., Duarte, A. R., & Brito, N. L. C. (2012). Throughput maximization of queueing networks with simultaneous minimization of service rates and buffers. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/692593 es_ES
dc.description.references Cruz, F. R. B., Van Woensel, T., & Smith, J. M. G. (2010). Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach. International Journal of Production Economics, 125(2), 224-234. https://doi.org/10.1016/j.ijpe.2010.02.017 es_ES
dc.description.references Demir, L., Tunali, S., & Eliiyi, D. T. (2014). The state of the art on buffer allocation problem: A comprehensive survey. Journal of Intelligent Manufacturing, 25(3), 371-392. https://doi.org/10.1007/s10845-012-0687-9 es_ES
dc.description.references Dengiz, B., & Akbay, K. S. (2000). Computer simulation of a PCB production line: Metamodeling approach. International Journal of Production Economics, 63(2), 195-205. https://doi.org/10.1016/S0925-5273(99)00013-4 es_ES
dc.description.references Dolgui, A. B., Eremeev, A. V., & Sigaev, V. S. (2017). Analysis of a multicriterial buffer capacity optimization problem for a production line. Automation and Remote Control, 78(7), 1276-1289. https://doi.org/10.1134/S0005117917070098 es_ES
dc.description.references Durieux, S., & Pierreval, H. (2004). Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource. International Journal of Production Economics, 89(1), 21-30. https://doi.org/10.1016/S0925-5273(03)00199-3 es_ES
dc.description.references García Dunna, E., García Reyes, H., & Cárdenas Barrón, L. E. (2013). Simulación y análisis de sistemas con ProModel (Segunda ed.). México: Pearson. es_ES
dc.description.references Hernández-Vázquez, J. O., Hernández-González, S., Jiménez-García, J. A., Hernández-Ripalda, M. D., & Hernández-Vázquez, J. I. (2019). Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie. Revista Iberoamericana de Automática e Informática Industrial, 16(4), 447-458. https://doi.org/10.4995/riai.2019.10883 es_ES
dc.description.references Hernandez-Vicen, J., Martinez, S., & Balaguer, C. (2021). Principios básicos para el desarrollo de una aplicación de bi-manipulación de cajas por un robot humanoide. Revista Iberoamericana de Automática e Informática industrial, 18(2), 129-137. https://doi.org/10.4995/riai.2020.13097 es_ES
dc.description.references Kleijnen, J. P. C., & Sargent, R. G. (2000). A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120(1), 14-29. https://doi.org/10.1016/S0377-2217(98)00392-0 es_ES
dc.description.references Köse, S. Y., Demir, L., Tunal, S., & Eliiyi, D. T. (2015). Capacity improvement using simulation optimization approaches: A case study in the thermotechnology industry. Engineering Optimization, 47(2), 149-164. https://doi.org/10.1080/0305215X.2013.875166 es_ES
dc.description.references Kose, S. Y., & Kilincci, O. (2015). Hybrid approach for buffer allocation in open serial production lines. Computers & Operations Research, 60, 67-78. https://doi.org/10.1016/j.cor.2015.01.009 es_ES
dc.description.references Kose, S. Y., & Kilincci, O. (2018). A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines. Journal of Intelligent Manufacturing, 1-19. https://doi.org/10.1007/s10845-018-1435-6 es_ES
dc.description.references Koyuncuoğlu, M. U., & Demir, L. (2021). Buffer capacity allocation in unreliable production lines: An adaptive large neighborhood search approach. Engineering Science and Technology, an International Journal, 24(2), 299-309. https://doi.org/10.1016/j.jestch.2020.08.012 es_ES
dc.description.references Li, J. (2013). Continuous improvement at Toyota manufacturing plant: Applications of production systems engineering methods. International Journal of Production Research, 51(23-24), 7235-7249. https://doi.org/10.1080/00207543.2012.753166 es_ES
dc.description.references Lin, J. T., & Chiu, C. C. (2018). A hybrid particle swarm optimization with local search for stochastic resource allocation problem. Journal of Intelligent Manufacturing, 29(3), 481-495. https://doi.org/10.1007/s10845-015-1124-7 es_ES
dc.description.references Mohtashami, A. (2014). A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. International Journal of Advanced Manufacturing Technology, 74(9-12), 1577-1593. https://doi.org/10.1007/s00170-014-6098-7 es_ES
dc.description.references Motlagh, M. M., Azimi, P., Amiri, M., & Madraki, G. (2019). An efficient simulation optimization methodology to solve a multi-objective problem in unreliable unbalanced production lines. Expert Systems with Applications, 138, 112836. https://doi.org/10.1016/j.eswa.2019.112836 es_ES
dc.description.references Nahas, N. (2017). Buffer allocation and preventive maintenance optimization in unreliable production lines. Journal of Intelligent Manufacturing, 28(1), 85-93. https://doi.org/10.1007/s10845-014-0963-y es_ES
dc.description.references Nahas, N., & Nourelfath, M. (2018). Joint optimization of maintenance, buffers and machines in manufacturing lines. Engineering Optimization, 50(1), 37-54. https://doi.org/10.1080/0305215X.2017.1299716 es_ES
dc.description.references Nahas, N., Nourelfath, M., & Gendreau, M. (2014). Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks. International Journal of Production Economics, 154, 113-126. https://doi.org/10.1016/j.ijpe.2014.04.011 es_ES
dc.description.references Narasimhamu, K. L., Venugopal Reddy, V., & Rao, C. S. P. (2014). Optimal buffer allocation in tandem closed queuing network with single server using PSO. Procedia Materials Science, 5, 2084-2089. https://doi.org/10.1016/j.mspro.2014.07.543 es_ES
dc.description.references Noguera, J. H., & Watson, E. F. (2006). Response surface analysis of a multi-product batch processing facility using a simulation metamodel. International Journal of Production Economics, 102(2), 333-343. https://doi.org/10.1016/j.ijpe.2005.02.014 es_ES
dc.description.references Oesterle, J., Bauernhansl, T., & Amodeo, L. (2016). Hybrid multi-objective optimization method for solving simultaneously the line balancing, equipment and buffer sizing problems for hybrid assembly systems. Procedia CIRP, 57, 416-421. https://doi.org/10.1016/j.procir.2016.11.072 es_ES
dc.description.references Ouzineb, M., Mhada, F. Z., Pellerin, R., & El Hallaoui, I. (2018). Optimal planning of buffer sizes and inspection station positions. Production and Manufacturing Research, 6(1), 90-112. https://doi.org/10.1080/21693277.2017.1422812 es_ES
dc.description.references Pantano, M., Fernández, M., Rodríguez, L., & Scaglia, G. (2021). Optimización dinámica basada en Fourier. Aplicación al proceso de biodiesel. Revista Iberoamericana de Automática e Informática industrial, 18(1), 32-38. https://doi.org/10.4995/riai.2020.12920 es_ES
dc.description.references Patchong, A., & Kerbache, L. (2017). Transiting toward the factory of the future: Optimal buffer sizes and robot cell design in car body production. IEEE International Conference on Industrial Engineering and Engineering Management, 2017-Decem, 1596-1601. https://doi.org/10.1109/IEEM.2017.8290162 es_ES
dc.description.references Renna, P. (2019). Adaptive policy of buffer allocation and preventive maintenance actions in unreliable production lines. Journal of Industrial Engineering International, 15(3), 411-421. https://doi.org/10.1007/s40092-018-0301-7 es_ES
dc.description.references Shaaban, S., & Romero-Silva, R. (2020). Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs. Central European Journal of Operations Research. https://doi.org/10.1007/s10100-019-00670-9 es_ES
dc.description.references Su, C., Shi, Y., & Dou, J. (2017). Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. Journal of Cleaner Production, 166, 756-770. https://doi.org/10.1016/j.jclepro.2017.08.064 es_ES
dc.description.references Wang, G., Shin, Y. W., & Moon, D. H. (2016). Comparison of three flow line layouts with unreliable machines and profit maximization. Flexible Services and Manufacturing Journal, 28(4), 669-693. https://doi.org/10.1007/s10696-015-9233-3 es_ES
dc.description.references Wang, G., Song, S., Shin, Y. W., & Moon, D. H. (2014). A simulation based study on increasing production capacity in a crankshaft line considering limited budget and space. Journal of Korean Institute of Industrial Engineers, 40(5), 481-491. https://doi.org/10.7232/JKIIE.2014.40.5.481 es_ES
dc.description.references Weiss, S., Schwarz, J. A., & Stolletz, R. (2019). The buffer allocation problem in production lines: Formulations, solution methods, and instances. IISE Transactions, 51(5), 456-485. https://doi.org/10.1080/24725854.2018.1442031 es_ES
dc.description.references Weiss, S., & Stolletz, R. (2015). Buffer allocation in stochastic flow lines via sample-based optimization with initial bounds. OR Spectrum, 37(4), 869-902. https://doi.org/10.1007/s00291-015-0393-z es_ES
dc.description.references Xi, S., Smith, J. M., Chen, Q., Mao, N., Zhang, H., & Yu, A. (2021). Simultaneous machine selection and buffer allocation in large unbalanced series-parallel production lines. International Journal of Production Research. https://doi.org/10.1080/00207543.2021.1884306 es_ES
dc.description.references Yu, P. L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936-946. https://doi.org/10.1287/mnsc.19.8.936 es_ES
dc.description.references Yuzukirmizi, M., & Smith, J. M. G. (2008). Optimal buffer allocation in finite closed networks with multiple servers. Computers and Operations Research, 35(8), 2579-2598. https://doi.org/10.1016/j.cor.2006.12.008 es_ES
dc.description.references Zandieh, M., Joreir-Ahmadi, M. N., & Fadaei-Rafsanjani, A. (2017). Buffer allocation problem and preventive maintenance planning in non-homogenous unreliable production lines. International Journal of Advanced Manufacturing Technology, 91(5-8), 2581-2593. https://doi.org/10.1007/s00170-016-9744-4 es_ES
dc.description.references Zhou, B. H., Liu, Y. W., Yu, J. Di, & Tao, D. (2018). Optimization of buffer allocation in unreliable production lines based on availability evaluation. Optimal Control Applications and Methods, 39(1), 204-219. https://doi.org/10.1002/oca.2341 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem